Abstract

A novel method of common-path imaging interferometry, the White Light Spatial-Phase-Shift (WLSPS) for object surface measurements, is discussed here. Compared to standard White Light Interferometry (WLI), which uses a reference mirror, the interferometry of WLSPS is obtained by creating manipulations to the light wavefront reflected from an object’s surface. Using this approach, surface measurements can be obtained from any real object image, and do not need to be taken directly from the object itself. This creates the ability for a surface measurement tool to be attached to any optical system that generates a real image of an object. Further, as this method does not require a reference beam, the surface measurement system contains inherent vibration cancelation

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial-phase-shift imaging interferometry using a spectrally modulated white light source

Shlomi Epshtein, Alon Harris, Igor Yakubov, Garrett Locketz, Yitzhak Yitzhaky, and Yoel Arieli
Opt. Lett. 39(24) 6966-6968 (2014)

Wavefront reconstruction by spatial-phase-shift imaging interferometry

Shay Wolfling, Emmanuel Lanzmann, Nissim Ben-Yosef, and Yoel Arieli
Appl. Opt. 45(12) 2586-2596 (2006)

Spatial phase-shift interferometry—a wavefront analysis technique for three-dimensional topometry

Shay Wolfling, Emmanuel Lanzmann, Moshe Israeli, Nissim Ben-Yosef, and Yoel Arieli
J. Opt. Soc. Am. A 22(11) 2498-2509 (2005)

References

  • View by:
  • |
  • |
  • |

  1. O. Soloviev and G. Vdovin, “Phase extraction from three and more interferograms registered with different unknown wavefront tilts,” Opt. Express 13(10), 3743–3753 (2005).
    [Crossref] [PubMed]
  2. S. Cain, “Design of an image projection correlating wavefront sensor for adaptive optics,” Opt. Eng. 43(7), 1670–1681 (2004).
    [Crossref]
  3. A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
    [Crossref]
  4. T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
    [Crossref]
  5. S. Wolfling, N. Ben-Yosef, and Y. Arieli, “Generalized method for wave-front analysis,” Opt. Lett. 29(5), 462–464 (2004).
    [Crossref] [PubMed]
  6. S. Wolfling, D. Banitt, N. Ben-Yosef, and Y. Arieli, “Innovative metrology method for the 3-dimensional measurement of MEMS structures,” Proc. SPIE 5343, 255–263 (2004).
  7. S. Wolfling, E. Lanzmann, M. Israeli, N. Ben-Yosef, and Y. Arieli, “Spatial phase shift interferometry—A wavefront analysis technique for three-dimensional topometry,” J. Opt. Soc. Am. A 22(11), 2498–2509 (2005).
    [Crossref]
  8. D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
    [Crossref] [PubMed]
  9. F. Zernike, “Diffraction theory of knife-edge test and its improved form, the phase-contrast,” Mon. Not. R. Astron. Soc. 94, 377–384 (1934).
  10. R. Jensen-Clem, J. K. Wallace, and E. Serabyn, “Characterization of the phase shifting Zernike wavefront sensor for telescope applications,” in Aerospace Conference (IEEE, 2012), pp. 1–7.
  11. J. C. Wyant, “White light interferometry,” Proc. SPIE 4737, 98–107 (2002).
    [Crossref]
  12. K. Underwood, J. C. Wyant, and C. L. Koliopoulos, “Self-referencing wavefront sensor,” Proc. SPIE 0351, 108–114 (1983).
    [Crossref]

2005 (2)

2004 (5)

S. Cain, “Design of an image projection correlating wavefront sensor for adaptive optics,” Opt. Eng. 43(7), 1670–1681 (2004).
[Crossref]

A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
[Crossref]

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

S. Wolfling, N. Ben-Yosef, and Y. Arieli, “Generalized method for wave-front analysis,” Opt. Lett. 29(5), 462–464 (2004).
[Crossref] [PubMed]

S. Wolfling, D. Banitt, N. Ben-Yosef, and Y. Arieli, “Innovative metrology method for the 3-dimensional measurement of MEMS structures,” Proc. SPIE 5343, 255–263 (2004).

2002 (1)

J. C. Wyant, “White light interferometry,” Proc. SPIE 4737, 98–107 (2002).
[Crossref]

1997 (1)

1983 (1)

K. Underwood, J. C. Wyant, and C. L. Koliopoulos, “Self-referencing wavefront sensor,” Proc. SPIE 0351, 108–114 (1983).
[Crossref]

1934 (1)

F. Zernike, “Diffraction theory of knife-edge test and its improved form, the phase-contrast,” Mon. Not. R. Astron. Soc. 94, 377–384 (1934).

Arieli, Y.

Banitt, D.

S. Wolfling, D. Banitt, N. Ben-Yosef, and Y. Arieli, “Innovative metrology method for the 3-dimensional measurement of MEMS structures,” Proc. SPIE 5343, 255–263 (2004).

Ben-Yosef, N.

Buchter, S. C.

A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
[Crossref]

Cain, S.

S. Cain, “Design of an image projection correlating wavefront sensor for adaptive optics,” Opt. Eng. 43(7), 1670–1681 (2004).
[Crossref]

Fukuchi, T.

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

Israeli, M.

Kaivola, M.

A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
[Crossref]

Koliopoulos, C. L.

K. Underwood, J. C. Wyant, and C. L. Koliopoulos, “Self-referencing wavefront sensor,” Proc. SPIE 0351, 108–114 (1983).
[Crossref]

Lanzmann, E.

Nayuki, T.

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

Nemoto, K.

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

Phillion, D. W.

Shevchenko, A.

A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
[Crossref]

Soloviev, O.

Tabiryan, N. V.

A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
[Crossref]

Uchino, K.

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

Underwood, K.

K. Underwood, J. C. Wyant, and C. L. Koliopoulos, “Self-referencing wavefront sensor,” Proc. SPIE 0351, 108–114 (1983).
[Crossref]

Vdovin, G.

Wolfling, S.

Wyant, J. C.

J. C. Wyant, “White light interferometry,” Proc. SPIE 4737, 98–107 (2002).
[Crossref]

K. Underwood, J. C. Wyant, and C. L. Koliopoulos, “Self-referencing wavefront sensor,” Proc. SPIE 0351, 108–114 (1983).
[Crossref]

Yamaguchi, Y.

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

Zernike, F.

F. Zernike, “Diffraction theory of knife-edge test and its improved form, the phase-contrast,” Mon. Not. R. Astron. Soc. 94, 377–384 (1934).

Appl. Opt. (1)

Electr. Eng. Jpn. (1)

T. Fukuchi, Y. Yamaguchi, T. Nayuki, K. Nemoto, and K. Uchino, “Development of a laser wavefront sensor for measurement of discharges in air,” Electr. Eng. Jpn. 146(4), 10–17 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Mon. Not. R. Astron. Soc. (1)

F. Zernike, “Diffraction theory of knife-edge test and its improved form, the phase-contrast,” Mon. Not. R. Astron. Soc. 94, 377–384 (1934).

Opt. Commun. (1)

A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Self-focusing in a nematic liquid crystal for measurements of wavefront distortions,” Opt. Commun. 232(1–6), 439–442 (2004).
[Crossref]

Opt. Eng. (1)

S. Cain, “Design of an image projection correlating wavefront sensor for adaptive optics,” Opt. Eng. 43(7), 1670–1681 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (3)

S. Wolfling, D. Banitt, N. Ben-Yosef, and Y. Arieli, “Innovative metrology method for the 3-dimensional measurement of MEMS structures,” Proc. SPIE 5343, 255–263 (2004).

J. C. Wyant, “White light interferometry,” Proc. SPIE 4737, 98–107 (2002).
[Crossref]

K. Underwood, J. C. Wyant, and C. L. Koliopoulos, “Self-referencing wavefront sensor,” Proc. SPIE 0351, 108–114 (1983).
[Crossref]

Other (1)

R. Jensen-Clem, J. K. Wallace, and E. Serabyn, “Characterization of the phase shifting Zernike wavefront sensor for telescope applications,” in Aerospace Conference (IEEE, 2012), pp. 1–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 General characteristic optical setup of the WLSPS interferometry technique.
Fig. 2
Fig. 2 The optical system for the WLSPS includes two parts, the illumination and the imaging apparatuses.
Fig. 3
Fig. 3 The beam splitter in the Michelson interferometer divides the incoming beam to two beams, each propagated in each interferometer's arms. At the interferometer mirrors, spatial parts of the beams were blocked by an annular and an aperture stops and a phase shift is introduced.
Fig. 4
Fig. 4 The VLSI target with a trench of 1 mm width and 8 μm depth. The individual parts of the VLSI target, each with distinct heights, have different intensity illumination due to the phase contrast effect.
Fig. 5
Fig. 5 A typical interferogram obtained in the WLSPS setup.
Fig. 6
Fig. 6 A 3D reconstruction of the VLSI. All dimensions represented in microns.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

o( x,y,λ )=A( x,y,λ )exp[ iφ( x,y,λ ) ]
φ( x,y,λ )=4π h( x,y ) λ mod2π
H( u,v,λ )=G( u,v ){ exp[ iθ( λ ) ]1 }+1
O'( u,v,λ )= C 1 ( λ )O( u,v,λ )H( u,v,λ )
a( x,y,λ )= C 2 ( λ ) F 1 [ O'( u,v,λ ) ] = C 2 ( λ ) F 1 { C 1 ( λ )[ O( u,v,λ ) ][ G( u,v ){ exp[ iθ( λ ) ]1 }+1 ] } =C( λ ){ o( x,y,λ )+S( x,y,λ )[ exp( iθ )1 ] }
I(x,y,λ)= | C(λ){ o(x,y,λ)+S(x,y,λ)[ exp(iθ)1 ] } | 2
I(x,y,λ)=R(λ) | C(λ){ o(x,y,λ)+S(x,y,λ)[ exp(iθ)1 ] } | 2 dλ

Metrics