Abstract

A novel photonic approach to generating binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range is proposed and experimentally demonstrated. In the proposed system, a dual-parallel Mach-Zehnder modulator (DP-MZM) is used as an optical wavelength shifter. To generate a phase-coded microwave waveform, the coding signal is modulated on the original wavelength using a phase modulator (PM). Combining the shifted wavelength and the original wavelength, two wavelengths with a frequency space determined by the input microwave signal are obtained. Applying them to a photodetector (PD), a phase-coded microwave waveform is generated. The key significance of the approach is that both binary and quaternary phase-coded microwave waveforms can be generated with an ultra-wide frequency tunable range. An experiment is performed. The generation of binary and quaternary microwave waveforms with a microwave carrier frequency at 10 and 20 GHz is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-format signal generation using a frequency-tunable optoelectronic oscillator

Yang Chen, Shifeng Liu, and Shilong Pan
Opt. Express 26(3) 3404-3420 (2018)

Theoretical investigation of photonic generation of frequency quadrupling linearly chirped waveform with large tunable range

Yulei Liu, Jun Liang, Xuan Li, Nan Xiao, Zhenghao Zhang, and Xiaogang Yuan
Opt. Express 25(14) 16196-16203 (2017)

Photonic microwave waveform generation based on phase modulation and tunable dispersion

Yongsheng Gao, Aijun Wen, Hanxiao Zheng, Dong Liang, and Lin Lin
Opt. Express 24(12) 12524-12533 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Skolnik, “Role of radar in microwaves,” IEEE Trans. Microw. Theory Tech. 50(3), 625–632 (2002).
    [Crossref]
  2. D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).
  3. H. D. Griffiths and W. J. Bradford, “Digital generation of high time bandwidth product linear FM waveforms for radar altimeters,” in IEE Proceedings of Radar and Signal Processing (IEE, 1992), pp. 160–169.
    [Crossref]
  4. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feed back,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  5. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
    [Crossref] [PubMed]
  6. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
    [Crossref]
  7. M. Li, A. Malacarne, S. LaRochelle, J. P. Yao, and J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” in Proceedings of IEEE International Topical Meeting on and Microwave Photonics Conference (IEEE, 2011), pp. 18–21.
    [Crossref]
  8. C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 24(17), 1493–1495 (2012).
    [Crossref]
  9. C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(19), 1375–1377 (2009).
    [Crossref]
  10. H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
    [Crossref]
  11. Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  12. H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
    [Crossref]
  13. Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
    [Crossref]
  14. M. Li, Z. Li, and J. P. Yao, “Photonic generation of precisely π phase-shifted binary phase-coded microwave signal,” IEEE Photon. Technol. Lett. 24(22), 2001–2004 (2012).
    [Crossref]
  15. L. Gao, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photon. Technol. Lett. 25(10), 899–902 (2013).
    [Crossref]
  16. Y. Chen, A. Wen, and J. P. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photon. Technol. Lett. 25(23), 2319–2322 (2013).
    [Crossref]
  17. W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
    [Crossref] [PubMed]
  18. W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
    [Crossref]
  19. W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
    [Crossref]
  20. W. Li, F. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
    [Crossref]
  21. T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
    [Crossref]

2013 (6)

L. Gao, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photon. Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Y. Chen, A. Wen, and J. P. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photon. Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

W. Li, F. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[Crossref]

2012 (2)

M. Li, Z. Li, and J. P. Yao, “Photonic generation of precisely π phase-shifted binary phase-coded microwave signal,” IEEE Photon. Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

2011 (3)

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

2009 (1)

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[Crossref]

2008 (1)

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

2007 (1)

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

2005 (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feed back,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

2004 (1)

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[Crossref]

2002 (2)

Chen, X.

L. Gao, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photon. Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Chen, Y.

Y. Chen, A. Wen, and J. P. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photon. Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

Chi, H.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

Gao, L.

L. Gao, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photon. Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Izutsu, M.

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[Crossref]

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feed back,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Kawanishi, T.

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[Crossref]

Kong, F.

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feed back,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Leaird, D. E.

Li, M.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

M. Li, Z. Li, and J. P. Yao, “Photonic generation of precisely π phase-shifted binary phase-coded microwave signal,” IEEE Photon. Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Li, W.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, F. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Li, Z.

M. Li, Z. Li, and J. P. Yao, “Photonic generation of precisely π phase-shifted binary phase-coded microwave signal,” IEEE Photon. Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

McKinney, J. D.

Skolnik, M.

M. Skolnik, “Role of radar in microwaves,” IEEE Trans. Microw. Theory Tech. 50(3), 625–632 (2002).
[Crossref]

Wang, C.

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[Crossref]

Wang, H.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

Wang, L. X.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

Weiner, A. M.

Wen, A.

Y. Chen, A. Wen, and J. P. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photon. Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

Yao, J. P.

Y. Chen, A. Wen, and J. P. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photon. Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

L. Gao, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photon. Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

W. Li, F. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[Crossref]

M. Li, Z. Li, and J. P. Yao, “Photonic generation of precisely π phase-shifted binary phase-coded microwave signal,” IEEE Photon. Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[Crossref]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Zhu, N. H.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (3)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feed back,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

IEEE Photon. J. (1)

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (9)

M. Li, Z. Li, and J. P. Yao, “Photonic generation of precisely π phase-shifted binary phase-coded microwave signal,” IEEE Photon. Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

L. Gao, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photon. Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Y. Chen, A. Wen, and J. P. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photon. Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[Crossref]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

M. Skolnik, “Role of radar in microwaves,” IEEE Trans. Microw. Theory Tech. 50(3), 625–632 (2002).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Other (3)

D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).

H. D. Griffiths and W. J. Bradford, “Digital generation of high time bandwidth product linear FM waveforms for radar altimeters,” in IEE Proceedings of Radar and Signal Processing (IEE, 1992), pp. 160–169.
[Crossref]

M. Li, A. Malacarne, S. LaRochelle, J. P. Yao, and J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” in Proceedings of IEEE International Topical Meeting on and Microwave Photonics Conference (IEEE, 2011), pp. 18–21.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed phase-coded microwave waveform generation system. (b) Schematic diagram of the optical wavelength shifter. LD, laser diode; OC, optical coupler; PC, polarization controller; DP-MZM, dual-parallel Mach-Zehnder Modulator; PM, phase modulator; MSG, microwave signal generator; AWG, arbitrary waveform generator; EA, electrical amplifier; PBC, polarization beam combiner; Pol, polarizer; PD, photodetector; OSC, oscilloscope; EC, electrical coupler, PS, phase shifter.
Fig. 2
Fig. 2 Optical signals at the output of the polarizer with a microwave signal at (a) 10 GHz, and (b) 20 GHz. Insects are the optical signals at the output of the DP-MZM (left) and PM (right).
Fig. 3
Fig. 3 Generated 10-GHz (a) binary, and (b) quaternary phase-coded microwave waveform and the recovered phase information.
Fig. 4
Fig. 4 (a) A section of the generated 10-GHz binary phase-coded microwave waveform with and without an AWGN. Autocorrelation of the 10-GHz binary phase-coded microwave waveform (b) without noise, and (c) with an AWGN. Autocorrelation of the 10-GHz quaternary phase-coded microwave waveform (d) without noise, and (e) with an AWGN.
Fig. 5
Fig. 5 Generated 20-GHz (a) binary, and (b) quaternary phase-coded microwave waveform and the recovered phase information.
Fig. 6
Fig. 6 Autocorrelation of the 20-GHz binary phase-coded microwave waveform (a) without noise, and (b) with an AWGN. Autocorrelation of the 20-GHz quaternary phase-coded microwave waveform (c) without noise, and (b) with an AWGN.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E PM ( t )= E 0 exp( j ω c t+jms( t ) )
E DPMZM ( t )= E 1 exp( j ω c t±j ω s t )
E polarizer ( t )= 2 2 E 1 exp( j ω c t±j ω s t )+ 2 2 E 0 exp( j ω c t+jms( t ) )
i( t )=R | E polarizer ( t ) | 2 = 1 2 R E 0 2 + 1 2 R E 1 2 +R E 0 E 1 cos( ω s tms( t ) )

Metrics