Abstract

A stable nonlinear optical point light source is investigated, based on field enhancement at individual, pointed gold nanocones with sub-wavelength dimensions. Exciting these cones with near-infrared, focused radially polarized femtosecond beams allows for tip-emission at the second harmonic wavelength (second harmonic generation, SHG) in the visible range. In fact, gold nanocones with ultra-sharp tips possess interesting nonlinear optical (NLO) properties for SHG and two-photon photoluminescence (TPPL) emission, due to the enhanced electric field confinement at the tip apex combined with centrosymmetry breaking. Using two complementary optical setups for bottom or top illumination a sharp tip SHG emission is discriminated from the broad TPPL background continuum. Moreover, comparing the experiments with theoretical calculations manifests that these NLO signatures originate either from the tip apex or the base edge of the nanocones, clearly depending on the cone size, the surrounding medium, and illumination conditions. Finally, it is demonstrated that the tip-emitted signal vanishes when switching from radial to azimuthal polarization.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009).
    [CrossRef] [PubMed]
  2. J.-J. Greffet, “Applied physics: nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
    [CrossRef] [PubMed]
  3. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  4. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
    [CrossRef]
  5. B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
    [CrossRef] [PubMed]
  6. S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
    [CrossRef] [PubMed]
  7. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett.33(6), 611–613 (2008).
    [CrossRef] [PubMed]
  8. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
    [CrossRef]
  9. H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
    [CrossRef] [PubMed]
  10. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007).
    [CrossRef] [PubMed]
  11. J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
    [CrossRef] [PubMed]
  12. A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
    [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
    [CrossRef] [PubMed]
  14. P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
    [CrossRef]
  15. X.-W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18(10), 10878–10887 (2010).
    [CrossRef] [PubMed]
  16. H. Furukawa and S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun.148(4-6), 221–224 (1998).
    [CrossRef]
  17. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
    [CrossRef]
  18. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
    [CrossRef] [PubMed]
  19. F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
    [CrossRef] [PubMed]
  20. R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
    [CrossRef]
  21. M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
    [CrossRef]
  22. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008).
    [CrossRef]
  23. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  24. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
    [CrossRef] [PubMed]
  25. C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
    [CrossRef] [PubMed]
  26. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  27. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  28. C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007).
    [CrossRef]
  29. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
    [CrossRef] [PubMed]
  30. M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
    [CrossRef] [PubMed]
  31. M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
    [CrossRef] [PubMed]
  32. M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
    [CrossRef]
  33. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
    [CrossRef]
  34. T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
    [CrossRef] [PubMed]
  35. J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009).
    [CrossRef] [PubMed]
  36. J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV- nanoimprint lithography,” Microelectron. Eng.87(9), 1711–1715 (2010).
    [CrossRef]
  37. L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
    [CrossRef] [PubMed]
  38. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
    [CrossRef] [PubMed]
  39. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  40. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
    [CrossRef]
  41. C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
    [CrossRef] [PubMed]
  42. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
    [CrossRef] [PubMed]
  43. C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005).
    [CrossRef]
  44. S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
    [CrossRef]
  45. F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
    [CrossRef] [PubMed]
  46. J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
    [CrossRef] [PubMed]
  47. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
    [CrossRef] [PubMed]
  48. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
    [CrossRef]
  49. M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
    [CrossRef] [PubMed]
  50. A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
    [CrossRef] [PubMed]
  51. A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
    [CrossRef]
  52. R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011).
    [CrossRef] [PubMed]
  53. D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
    [CrossRef]
  54. M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8(7), 458–474 (2001).
    [CrossRef] [PubMed]
  55. T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011).
    [CrossRef] [PubMed]
  56. F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
    [CrossRef]
  57. M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
    [CrossRef]
  58. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005).
    [CrossRef]
  59. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008).
    [CrossRef] [PubMed]
  60. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253(1274), 358–379 (1959).
    [CrossRef]
  61. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  62. M. Lieb, “Mikroskopie mit Parabolspiegeloptik”, Ph.D. Thesis, Universität Siegen (2001).
  63. J. S. Hesthaven and T. Warburton, “Nodal Higher-Order Methods on Unstructured Grids,” J. Comput. Phys.181(1), 186–221 (2002).
    [CrossRef]
  64. J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
    [CrossRef]
  65. A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
    [CrossRef]
  66. J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980).
    [CrossRef]
  67. Sopra n&k Database, Sopralab, www.sopra-sa.com , (2012).

2013

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

2012

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
[CrossRef]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

2011

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
[CrossRef]

T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011).
[CrossRef] [PubMed]

R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011).
[CrossRef] [PubMed]

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
[CrossRef] [PubMed]

2010

X.-W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18(10), 10878–10887 (2010).
[CrossRef] [PubMed]

A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
[CrossRef]

J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV- nanoimprint lithography,” Microelectron. Eng.87(9), 1711–1715 (2010).
[CrossRef]

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

2009

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
[CrossRef]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009).
[CrossRef] [PubMed]

2008

Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett.33(6), 611–613 (2008).
[CrossRef] [PubMed]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008).
[CrossRef] [PubMed]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
[CrossRef] [PubMed]

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

2007

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
[CrossRef]

2005

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005).
[CrossRef]

J.-J. Greffet, “Applied physics: nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005).
[CrossRef]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
[CrossRef] [PubMed]

2003

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

2002

S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

J. S. Hesthaven and T. Warburton, “Nodal Higher-Order Methods on Unstructured Grids,” J. Comput. Phys.181(1), 186–221 (2002).
[CrossRef]

2001

M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8(7), 458–474 (2001).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
[CrossRef] [PubMed]

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

2000

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
[CrossRef] [PubMed]

1998

H. Furukawa and S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun.148(4-6), 221–224 (1998).
[CrossRef]

1981

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

1980

J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980).
[CrossRef]

1965

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253(1274), 358–379 (1959).
[CrossRef]

Adam, P. M.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

Adam, P.-M.

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

Agio, M.

Alabastri, A.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Alaverdyan, Y.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Allegrini, M.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
[CrossRef] [PubMed]

Altoe, M. V. P.

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Bachelier, G.

Barchesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Batalov, A.

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Baudrion, A.-L.

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

Bautista, G.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Beams, R.

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

Benichou, E.

Bergman, J. G.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

Berweger, S.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Biagioni, P.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

Boudou, J.-P.

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Brabec, C. J.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Braun, K.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

Brevet, P. F.

Brown, F.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

Brown, T. G.

Busch, K.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
[CrossRef]

Cabrini, S.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
[CrossRef]

Celebrano, M.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

Cerullo, G.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
[CrossRef] [PubMed]

Chen, L.

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

Chen, X.-W.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18(10), 10878–10887 (2010).
[CrossRef] [PubMed]

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Cojoc, G.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

Cuche, A.

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007).
[CrossRef] [PubMed]

Das, G.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

De Angelis, F.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
[CrossRef] [PubMed]

De Silvestri, S.

Di Fabrizio, E.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
[CrossRef] [PubMed]

Dmitriev, A.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005).
[CrossRef]

Duò, L.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

Dutto, F.

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

Egelhaaf, H.-J.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Eghlidi, H.

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Ehlich, R.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Eng, L. M.

P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
[CrossRef]

R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011).
[CrossRef] [PubMed]

A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
[CrossRef]

Failla, A. V.

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011).
[CrossRef] [PubMed]

Faklaris, O.

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Finazzi, M.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

Fleischer, M.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
[CrossRef]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
[CrossRef]

Fontcuberta I Morral, A.

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

Francardi, M.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
[CrossRef] [PubMed]

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Fulmes, J.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

Furukawa, H.

H. Furukawa and S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun.148(4-6), 221–224 (1998).
[CrossRef]

Gali, A.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Georgi, U.

P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
[CrossRef]

Giugni, A.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Glass, A. M.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

Gollmer, D. A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

Götzinger, S.

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Grafström, S.

R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011).
[CrossRef] [PubMed]

A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
[CrossRef]

Grand, J.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

Greffet, J.-J.

J.-J. Greffet, “Applied physics: nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Grolig, J.

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Häffner, M.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Haussmann, A.

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Heeren, A.

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
[CrossRef]

Heiss, M.

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

Hennemann, L.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Heritage, J. P.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

Hesthaven, J. S.

J. S. Hesthaven and T. Warburton, “Nodal Higher-Order Methods on Unstructured Grids,” J. Comput. Phys.181(1), 186–221 (2002).
[CrossRef]

Hettich, C.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

Hille, A.

R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011).
[CrossRef] [PubMed]

A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
[CrossRef]

Hintz, H.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Höppener, C.

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

Hörber, J. K. H.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

Horneber, A.

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

Horrer, A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

Huant, S.

Huntington, M. D.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Husu, H.

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009).
[CrossRef] [PubMed]

Isa, L.

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Jäger, S.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

Jelezko, F.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Jiao, J. Q.

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

Jonin, C.

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
[CrossRef] [PubMed]

Kasemo, B.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Kato, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Kauranen, M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009).
[CrossRef] [PubMed]

Kawata, S.

H. Furukawa and S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun.148(4-6), 221–224 (1998).
[CrossRef]

Kern, D. P.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
[CrossRef]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
[CrossRef]

Kim, C. H.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Kim, J. H.

T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
[CrossRef] [PubMed]

Kim, T. I.

T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
[CrossRef] [PubMed]

Kolesov, R.

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

König, M.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
[CrossRef]

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV- nanoimprint lithography,” Microelectron. Eng.87(9), 1711–1715 (2010).
[CrossRef]

J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Kullock, R.

R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011).
[CrossRef] [PubMed]

A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
[CrossRef]

Kumar, K.

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Labardi, M.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
[CrossRef] [PubMed]

Lamy de la Chapelle, M.

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Langhammer, C.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Lee, K. G.

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005).
[CrossRef]

Liao, P. F.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

Liberale, C.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
[CrossRef] [PubMed]

Lieb, M. A.

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

López-Sánchez, O.

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

Lovera, A.

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Makino, T.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Malerba, M.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Meijer, J.

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Meixner, A. J.

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011).
[CrossRef] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008).
[CrossRef] [PubMed]

M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8(7), 458–474 (2001).
[CrossRef] [PubMed]

Meixner, A.-J.

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

Mizuochi, N.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Müller, M.

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Naydenov, B.

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Neacsu, C. C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007).
[CrossRef]

C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005).
[CrossRef]

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Neumann, P.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Niegemann, J.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
[CrossRef]

Nothaft, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Novotny, L.

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Odom, T. W.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Ogura, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Okushi, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Olmon, R. L.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

Olson, D. H.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

Palomba, S.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

Parks, R. E.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

Perrone Donnorso, M.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

Pessa, M.

Pezzagna, S.

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Poizat, J. P.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

Polli, D.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
[CrossRef] [PubMed]

Proietti Zaccaria, R.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005).
[CrossRef]

Radenovic, A.

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
[CrossRef] [PubMed]

Raschke, M. B.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007).
[CrossRef]

C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005).
[CrossRef]

Razzari, L.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Reichenbach, P.

P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
[CrossRef]

Reider, R. A.

C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005).
[CrossRef]

Reimhult, E.

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253(1274), 358–379 (1959).
[CrossRef]

Roch, J.-F.

Rogalla, D.

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Ropers, C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Russier-Antoine, I.

Sandoghdar, V.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18(10), 10878–10887 (2010).
[CrossRef] [PubMed]

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
[CrossRef] [PubMed]

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

Saraf, L. V.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

Sauvage, T.

Schäfer, C.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

Schmitt, C.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

Schuck, P. J.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Schwartzberg, A. M.

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Seo, S. M.

T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
[CrossRef] [PubMed]

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV- nanoimprint lithography,” Microelectron. Eng.87(9), 1711–1715 (2010).
[CrossRef]

J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980).
[CrossRef]

Sleeper, A. M.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

So, V. C. Y.

J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980).
[CrossRef]

Son, S. J.

T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
[CrossRef] [PubMed]

Sonnefraud, Y.

Stade, F.

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
[CrossRef]

Stadler, J.

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008).
[CrossRef] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

Stanciu, C.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008).
[CrossRef] [PubMed]

Stannigel, K.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
[CrossRef]

Stegeman, G. I.

J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Stupperich, C.

Suh, J. Y.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Sun, H. B.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Sutherland, D. S.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Svelto, O.

Takahashi, S.

S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

Takeuchi, D.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Textor, M.

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Toma, A.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Tommila, J.

Treussart, F.

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Voit, B.

P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
[CrossRef]

Wackenhut, F.

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

Wang, X.

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Warburton, T.

J. S. Hesthaven and T. Warburton, “Nodal Higher-Order Methods on Unstructured Grids,” J. Comput. Phys.181(1), 186–221 (2002).
[CrossRef]

Wasielewski, M. R.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Weber-Bargioni, A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
[CrossRef]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Wokaun, A.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253(1274), 358–379 (1959).
[CrossRef]

Wrachtrup, J.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

Yamasaki, S.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

Youngworth, K. S.

Zaccaria, R. P.

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
[CrossRef] [PubMed]

Zäch, M.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Zavelani-Rossi, M.

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004).
[CrossRef] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

Zhang, D.

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Zhou, W.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Züchner, T.

T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011).
[CrossRef] [PubMed]

ACS Nano

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010).
[CrossRef] [PubMed]

Adv. Mater.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011).
[CrossRef] [PubMed]

Appl. Phys. B

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008).
[CrossRef]

S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009).
[CrossRef] [PubMed]

ChemPhysChem

J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012).
[CrossRef] [PubMed]

J. Appl. Phys.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

J. Comput. Phys.

J. S. Hesthaven and T. Warburton, “Nodal Higher-Order Methods on Unstructured Grids,” J. Comput. Phys.181(1), 186–221 (2002).
[CrossRef]

J. Comput. Theor. Nanos.

A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010).
[CrossRef]

J. Laser Appl.

P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012).
[CrossRef]

J. Microsc.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001).
[CrossRef] [PubMed]

M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Raman Spectrosc.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009).
[CrossRef]

Microelectron. Eng.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012).
[CrossRef]

J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV- nanoimprint lithography,” Microelectron. Eng.87(9), 1711–1715 (2010).
[CrossRef]

F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007).
[CrossRef]

M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009).
[CrossRef]

M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011).
[CrossRef]

Nano Lett.

C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013).
[CrossRef] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

NanoBiotechnology

C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007).
[CrossRef]

Nanoscale

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013).
[CrossRef] [PubMed]

Nanotechnology

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010).
[CrossRef] [PubMed]

T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008).
[CrossRef] [PubMed]

Nat. Photonics

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Opt. Commun.

H. Furukawa and S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun.148(4-6), 221–224 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phot. Nano. Fund. Appl.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009).
[CrossRef]

Phys. Chem. Chem. Phys.

A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013).
[CrossRef] [PubMed]

Phys. Rev. B

C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980).
[CrossRef]

R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012).
[CrossRef]

Phys. Rev. Lett.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007).
[CrossRef] [PubMed]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Proc. Roy. Soc. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253(1274), 358–379 (1959).
[CrossRef]

Science

J.-J. Greffet, “Applied physics: nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other

Sopra n&k Database, Sopralab, www.sopra-sa.com , (2012).

M. Lieb, “Mikroskopie mit Parabolspiegeloptik”, Ph.D. Thesis, Universität Siegen (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Nanocone point light sources: (a) SEM image of 130NC on a glass substrate with a 50 nm ITO layer (array with 1 µm spacing). (b) Sketch of the illumination scheme of a cone in both configurations: from below in the immersion objective setup and from above in the parabolic mirror setup. SHG and TPPL signals are collected by the oil immersion lens (from below) or the parabolic mirror (from above) and coupled into the detection path. (c) Simulation of the electric field strengths at the surface of a 160NC with an aperture angle of 50° excited at a wavelength of 790 nm created by the out-of-plane plasmon mode (tip mode). The simulation is performed using the DG method (see Methods). Areas appearing in orange correspond to high electric field strengths. (d) Simulation of the electric field strengths at the surface of a 160NC excited at a wavelength of 790 nm created by the in-plane plasmon mode (base mode). (e) Nonlinear spectrum under excitation with radially and azimuthally polarized light (wavelength 774 nm) for the 160NC recorded with the parabolic mirror. The cone was positioned at the respective positions of highest field intensity in the focus. A SHG peak is observed at the frequency doubled wavelength of 387 nm together with a broad TPPL background.

Fig. 2
Fig. 2

Fabrication of nanocones. (a) Substrate: cover glass with a thin ITO layer, (b) substrate with Au film, (c) structured PMMA layer after e-beam lithography and development, (d) aluminum oxide mask on Au film after evaporation of aluminum oxide and lift-off, (e) ion-milling, (f) further ion-milling until the mask is removed.

Fig. 3
Fig. 3

Experimental setups. (a) In the immersion-oil-objective setup the sample is excited by a radially polarized femtosecond beam at 790 nm (about 100 fs, repetition rate 75 MHz). The immersion objective focuses the beam onto the sample surface with the nanocones and collects the SHG and TPPL in reflection. The objective with an N.A. of 1.49 collects the light under angles up to 80°. (b) Schematic scheme of focusing in the parabolic mirror setup. The radially polarized beam (774 nm, 120 fs, 89 MHz) is focused onto a sample by a parabolic mirror and hits the nanocones from above with a high aperture angle, making the Ez field component dominant. (c) Beam path with the immersion objective. The beam from the 100 fs laser (790 nm) goes through an arrangement of two pinholes and a segmented wave plate (MC) for creating the radial and azimuthal modes. After that it is coupled into the oil objective (OO). The SHG and TPPL signal (blue) from the nanostructures in the focus are returned through the objective via a beam splitter (BS) to the APD and the spectrometer, respectively. A filter (F) blocks out the infrared stray light, and another filter in front of the APD selects the wavelength range between 390 and 400 nm. (d) Schematic setup of the parabolic mirror assisted confocal microscope. The laser beam polarization is converted to a radial or azimuthal mode by a liquid crystal mode converter (MC) and focused with the parabolic mirror (PM) onto the sample. The signal is collected by the mirror under angles between 28 and 85°. A beam splitter (BS) and a filter (F) separate the signal from the excitation light. Via a flipping mirror (FM) the signal in the range of 350 to 680 nm can be directed to either an avalanche photo diode (APD) or a spectrograph (SP) with a cooled CCD-camera.

Fig. 4
Fig. 4

Calculation of the radial and azimuthal focus generated by the immersion objective. The focus is calculated with ITO (n = 1.9) in the lower half space and air (n = 1, a-f) or oil (n = 1.5, g-l) in the upper half space. The interface is indicated by a horizontal white line. As the cones interact rather with the 50 nm ITO layer than with the glass below it, we assumed the ITO layer to be infinitely thick. The light comes in from below through the ITO and is focused at the boundary. The scale λ corresponds to the vacuum wavelength of 790 nm. (a)-(c) Time average of the absolute value of the full field (E) (a) and the absolute values of the Ez (b) and Ex (c) components for the radial focus in air above ITO. The field values are plotted on the xz plane cutting the focus along the optical axis. On that plane Ey vanishes so that |(E)|2 = |Ex|2 + |Ez|2. The |Ez| values reach a maximum of 8.8 times the maximum of the |Ex| values. (d)-(f) Plots of the azimuthal focus in air above ITO. Here we plot |(E)| and the |Ez| and the |Ey| component. In the azimuthal focus only |Ey| does not vanish so that |(E)|2 = |Ey|2. All plots (a-f) are normalized to a uniform scale. (g)-(i) Plots of the radial focus in oil above ITO. The |Ez| values reach a maximum of 5.1 times the maximum of the |Ex| values. (j)-(l) Plots of the azimuthal focus in oil above ITO. All plots (g-l) are normalized to a uniform scale.

Fig. 5
Fig. 5

Electric field distributions in the radial or the azimuthal focus generated by the parabolic mirror The space is divided into air (n = 1) in the upper and ITO (n = 1.9) in the lower half space. The horizontal white line indicates the air/ITO interface, laser wavelength λ = 774 nm. Here, the incident light comes in from above. (a)-(c) Time average of the absolute value of the full (E)-field (a) and the absolute values of the Ez (b) and Ex (c) components of the radial focus, plotted on the xz-plane. Note that the Ez fields are very dominant: the maximum of |Ez| reaches about 9.0 times the maximum of |Ex| evaluated at the surface. (d)-(f) Time-averaged field values as in (a-c) for the azimuthal focus. Note that the electric field in the azimuthal focus is strongly suppressed close to the air/ITO interface in this configuration.

Fig. 6
Fig. 6

Oil-objective setup: (a) SHG (390-400 nm) and TPPL (420-640 nm) signal scans from 80NC, 130NC, 160NC and 200NC measured in air on a glass/ITO substrate, illuminated by a radially polarized beam focused through the oil immersion objective. The arrows in the insets depict the orientation of the electric field vectors for radial polarization in the parallel beam. The signal scans were obtained by moving a single cone across the xy-plane of the focus. Note that the dimensions of the cones themselves are no larger than 2-3 pixels on the scan images. The scans of the SHG and TPPL signal show ring-like patterns that stem from base edge excitation for the 80NC up to the 160 NC, and point-like tip emission for the 200NC. (b) SHG (390-400 nm) and TPPL (420-640 nm) signal scans from 80NC, 130NC, 160NC and 200NC measured in oil on a glass/ITO substrate as described above, illuminated by a radially polarized beam focused through the immersion oil objective. The scans of the SHG and TPPL signal show a transition from a ring-like pattern that stems from the base edge excitation (for 80NC) over a combined base edge and tip signal (130NC and 160NC) to a dominant maximum that stems from the cone tip (for 200NC).

Fig. 7
Fig. 7

SHG images of (a) 200NC and (b) 130NC recorded with the objective setup excited in the radial and azimuthal focus in air and in oil. The arrows in the insets depict the orientation of the electric field vectors for radial and azimuthal polarization in the parallel beams. The crosses mark the positions of the field minimum of the ring for the 130NC and the radial field maximum for the 200NC. The images in oil or in air were taken from different cones. However, for each cone size and for each medium (oil or air), the “radial” and “azimuthal” images were taken from the same cone by switching the polarization from radial to azimuthal and repeating the scan. (a) For 200NC in air where dominantly tip signal is observed, the signal basically vanishes when switching from radial to azimuthal polarization. For 200NC in oil, where a superposition of the ring-shaped pattern from the base mode and the spot from the tip mode is observed for radial polarization, switching from radial to azimuthal polarization turns off the Ez fields and hence the tip signal, leading to a pure cone edge signal, seen as a weak halo for the 200NC. (b) For 130NC in air where only the base mode is observed, switching from radial to azimuthal polarization leads to a rotation of the observed inhomogeneous ring pattern by 90° since the direction of in-plane excitation is rotated by 90°. For 130NC in oil, where a superposition of the ring-shaped pattern from the base mode and the spot from the tip mode is observed for radial polarization, switching from radial to azimuthal polarization turns off the Ez fields and hence the tip signal, leading to a pure cone edge signal, seen as a ring for the 130NC.

Fig. 8
Fig. 8

Parabolic mirror setup: Image scans of the combined SHG and TPPL signal of single 80NC, 130NC, 160NC and 200NC performed with the parabolic mirror setup. The cones are illuminated with a focused either radially or azimuthally polarized 774 fs laser beam. The arrows in the insets depict the orientation of the electric field vectors for radial and azimuthal polarization in the parallel beams. Increasing point-like tip emission is detected for increasing cone sizes for radial polarization, while the ring-shaped base emission is only weakly detected in this setup and is observed for the 80NC, 130NC and 160NC for azimuthal polarization. Note the different intensity scales.

Fig. 9
Fig. 9

Simulated SHG radiation from the cone tip and base edge for cones of different sizes in a medium with (c) n = 1.0 and (d) n = 1.5. For the simulation of the cone SHG the DG method was used in combination with an extended Drude-Lorentz model. The sketches in (a,b) show the superposition of eight plane waves used in the simulations to form a radial focus. A side view of such a superposition is shown in (a). A top view on the eight incident superposed k vectors is shown in (b). The radial focus is formed as a superposition of these plane waves coming from below through the substrate and being transmitted and reflected at the surface. The E-fields form a z-polarized field maximum in the center, where tip SHG will be excited if the cone is placed at position 1. If the cone is moved to position 2, i.e. 400 nm away from the center, base SHG is excited by an in-plane polarized (E)-field. While the tip and base SHG curves depict the trends for varying cone sizes, the absolute strengths of the tip and base intensities depend on the assumed radii of curvature for the tip and base edge and cannot be directly quantitatively compared, as the tip:base signal ratio in simulation and experiment may differ. The calculated cone base signal in air goes through a maximum for 160NC, and then decreases again. The tip signal increases with increasing cone sizes. In oil both tip and base signals are calculated to be highest for the 130NC, while the contrast between the tip and base signals increases for increasing cone sizes. The results are in good qualitative agreement with the image scans shown in Figs. 6 and 8.

Fig. 10
Fig. 10

Normalized far-field dark field scattering spectra of (a,d) 80NC, (b,e) 130NC and (c,f) 160NC measured (a-c) in air and (d-f) in oil (blue curves). In the dark field setup predominantly the base mode is detected. A plasmon resonance with increasing full-width-at-half-maximum is shifting towards longer wavelengths for bigger cone sizes. The measured spectra are compared with simulations carried out using the DG method (red curves). By selectively exciting either the tip or the base edge in additional simulations, the tip and base resonances were identified and marked by arrows in the panels.

Metrics