Abstract

Smart phones and tablets have become ubiquitous. Corning® Gorilla® Glass is well-known to provide durability and scratch-resistance to many smart phones and other mobile devices. Using femtosecond lasers, we report high quality photonic devices, such as a temperature sensor and an authentication security system, we believe for the first time. It was found that this kind of glass is an exceptional host for three dimensional waveguides. High quality multimode waveguides are demonstrated with the lowest measured loss value (0.027 dB/cm loss) to our knowledge in any glass using fs laser inscription. High quality (0.053 dB/cm loss) single-mode waveguides have been also fabricated using a fs laser scan speed of 300 mm/s, the fastest fabrication speed reported to date. The longest high quality waveguides (up to 1m) are also reported. Experiments reveal that Gorilla Glass seems to be an ideal glass to write waveguides just below the surface, which is of great interest in sensing applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Corning, A Day Made of Glass... Made possible by Corning. Retrieved October 10, 2013, from YouTube Web site: http://www.youtube.com/watch?v=6Cf7IL_eZ38 (2011).
  2. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).
  3. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
    [CrossRef]
  4. B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
    [CrossRef]
  5. J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
    [CrossRef]
  6. D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
    [CrossRef]
  7. B. J. P. da Silva, R. P. de Melo, E. L. Falco-Filho, and C. B. de Arajo, “Potassium source for ion-exchange glass waveguide fabrication,” Appl. Opt.36(24), 5949 (1997).
    [CrossRef] [PubMed]
  8. J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  10. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
    [CrossRef]
  11. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
    [CrossRef]
  12. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
    [CrossRef]
  13. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
    [CrossRef]
  14. J. Lapointe, R. Kashyap, and M.-J. Li, “High quality photonic devices directly written in Gorilla glass using a fs laser,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper W3.38.
    [CrossRef]
  15. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, 2002).
  16. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett.31(23), 3495–3497 (2006).
    [CrossRef] [PubMed]
  17. P. R. Herman, H. Zhang, S. M. Eaton, and J. Li, “Multipulse system for writing waveguides, gratings, and integrated optical circuits,” US Patent US2012/0039567A1 (2012).
  18. R. Kashyap, J. Lapointe, and M. Gagné, “Methods of making optical waveguides in glass and devices and system using the same,” US Provisional Patent Application 61/911,148 (2014).
  19. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 µm by astigmatic beam focusing,” Opt. Lett.27(21), 1938–1940 (2002).
    [CrossRef] [PubMed]
  20. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003).
    [CrossRef]
  21. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  22. W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. S. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express16(20), 16215–16226 (2008).
    [CrossRef] [PubMed]
  23. H. J. Arditty and H. C. Leèfovre, “Sagnac effect in fiber gyroscopes,” Opt. Lett.6(8), 401–403 (1981).
    [CrossRef] [PubMed]
  24. J. Capmany, P. Muñoz, S. Sales, D. Pastor, B. Ortega, and A. Martinez, “Arrayed waveguide Sagnac interferometer,” Opt. Lett.28(3), 197–199 (2003).
    [CrossRef] [PubMed]
  25. B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III Fr6, 1595–1624 (1996).
  26. M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
    [CrossRef]
  27. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30(9), 1060–1062 (2005).
    [CrossRef] [PubMed]
  28. Corning, “Corning Gorilla Glass Technical materials,” Retrieved October 11, 2013, from Corning Web site: http://www.corning.com/docs/specialtymaterials/pisheets/PI2317.pdf (2008).
  29. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).

2011

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).

2010

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

2009

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

2008

W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. S. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express16(20), 16215–16226 (2008).
[CrossRef] [PubMed]

J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
[CrossRef]

2006

2005

2003

2002

1998

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

1997

B. J. P. da Silva, R. P. de Melo, E. L. Falco-Filho, and C. B. de Arajo, “Potassium source for ion-exchange glass waveguide fabrication,” Appl. Opt.36(24), 5949 (1997).
[CrossRef] [PubMed]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

1996

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III Fr6, 1595–1624 (1996).

1995

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

1994

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

1988

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

1981

Adar, R.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Ams, M.

Arditty, H. J.

Bouchard, A.

J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
[CrossRef]

Broquin, J.-E.

J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
[CrossRef]

Burian, Z.

J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).

Capmany, J.

Carvalho, I. C. S.

Cerullo, G.

Corbari, C.

da Silva, B. J. P.

Davis, K. M.

de Arajo, C. B.

de Melo, R. P.

De Silvestri, S.

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Drahoš, V.

J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).

Eaton, S. M.

Falco-Filho, E. L.

Fujimoto, J. G.

Gagné, M.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

Ghibaudo, E.

J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
[CrossRef]

Grelin, J.

J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
[CrossRef]

Herman, P. R.

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Honkanen, S.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

Ippen, E. P.

Janakova, S.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

Kapila, D.

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

Kashyap, R.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

Kazansky, P. G.

Kherbouche, F.

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III Fr6, 1595–1624 (1996).

Kowalevicz, A. M.

Laporta, P.

Leèfovre, H. C.

Li, J.

Mackova, A.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

Marangoni, M.

Marshall, G. D.

Martinez, A.

Mika, M.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

Minoshima, K.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Mizrahi, V.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Muñoz, P.

Ortega, B.

Osellame, R.

Oswald, J.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

Pastor, D.

Plawsky, J. L.

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

Polli, D.

Poumellec, B.

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III Fr6, 1595–1624 (1996).

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Ramponi, R.

Sakaguchi, K.

Sales, S.

Schröfel, J.

J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).

Serbin, M. R.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Sharma, V.

Spence, D. J.

Spirkova, J.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

Špirková, J.

J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).

Srivastava, R.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Sugimoto, N.

Svecova, B.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

Taccheo, S.

Tervonen, A.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).

West, B. R.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).

Withford, M. J.

Yang, W.

Zhang, H.

Appl. Opt.

Appl. Phys. Lett.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997).
[CrossRef]

Ceram.- Silikaty

J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).

Chem. Eng. Sci.

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

J. Lightwave Technol.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

J. Mat. Sci. Mater.

B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009).
[CrossRef]

J. Non-Cryst. Solids

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. III Fr

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III Fr6, 1595–1624 (1996).

Mat. Sci. Eng. B-Solid

J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008).
[CrossRef]

Opt. Commun.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

Opt. Eng.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).

Opt. Express

Opt. Lett.

Other

P. R. Herman, H. Zhang, S. M. Eaton, and J. Li, “Multipulse system for writing waveguides, gratings, and integrated optical circuits,” US Patent US2012/0039567A1 (2012).

R. Kashyap, J. Lapointe, and M. Gagné, “Methods of making optical waveguides in glass and devices and system using the same,” US Provisional Patent Application 61/911,148 (2014).

J. Lapointe, R. Kashyap, and M.-J. Li, “High quality photonic devices directly written in Gorilla glass using a fs laser,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper W3.38.
[CrossRef]

P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, 2002).

Corning, A Day Made of Glass... Made possible by Corning. Retrieved October 10, 2013, from YouTube Web site: http://www.youtube.com/watch?v=6Cf7IL_eZ38 (2011).

Corning, “Corning Gorilla Glass Technical materials,” Retrieved October 11, 2013, from Corning Web site: http://www.corning.com/docs/specialtymaterials/pisheets/PI2317.pdf (2008).

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser writing of a photonic device in a smart phone screen. The photograph shows that the waveguide (a horizontal line from the left side) cannot be seen by the naked eye. The white light comes from the plasma generated by the nonlinear absorption of the focused laser.

Fig. 2
Fig. 2

Waveguides in Corning Gorilla Glass fabricated using a fs laser writing technique. Top and facette views of the 0.027 dB/cm loss multimode waveguide (a) and the 0.053 dB/cm loss singlemode waveguide (b). The near-field of the single-mode waveguide is also shown.

Fig. 3
Fig. 3

Facet view of waveguides written close to the surface of standard Corning 0215 soda-lime glass (a and b) as well as Gorilla Glass (c and d), using the same writing conditions. a and c: 25 μm under the surface. Near-field mode profiles of the Gorilla Glass waveguides 25 μm under the surface (e and f), and touching the surface (g and h).

Fig. 4
Fig. 4

(a) Top view of the splitting part at the MZI entrance. (b) Schematic of the MZI. (c) Spectrum of the MZI at 22°C (full blue curve) and at 32°C (red dashed line).

Fig. 5
Fig. 5

a: Microscope top view of a waveguide with scattering spots. b: Infrared top view of the same waveguide when 1550 nm light is launched into it. These spots are made by focusing the fs laser for a second at a point. c: Zoom in of a spot showing the waveguide and the micro-hole created.

Fig. 6
Fig. 6

Power response of the 30 cm multimode waveguide (with a loss of 0.027 dB/cm) using an optical backscatter reflectometer (OBR) as a function of the distance. The zoomed-in part is used to measure the loss of the waveguide.

Fig. 7
Fig. 7

Loss of the 30 cm multimode waveguide (with a loss of 0.027 dB/cm) with different launch NAs. More modes appear as the NA increases. At an NA of ~0.012, only the LP01 mode is seen, and at an NA of 0.25 all modes are seen at the waveguide output by altering the launch conditions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos( 2πnd λ )
υ= 2 I 1 I 2 I 1 + I 2
NA n 2 2 n 1 2

Metrics