Abstract

We develop a gallium arsenide (GaAs) photonic crystal nanocavity device capable of capturing and releasing a pulse of light by dynamic control of the Q factor through free carrier photoexcitation. Unlike silicon-based devices where the performance of this dynamic optical control is limited by absorption from free carriers with nanosecond-order lifetimes, the short carrier lifetime (∼ 7 ps) of our equivalent GaAs devices enables dynamic control with negligible absorption losses. We capture a 4 ps optical pulse by briefly cycling the Q factor from 40,000 to 7900 and back just as the light couples to the nanocavity and confirm that the captured energy can be subsequently released on demand by a second injection of free carriers. Demonstrating dynamic control with negligible loss in a GaAs nanophotonic device also opens the door to dynamic control of cavity quantum electrodynamics with potential application towards quantum information processing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity

Jeremy Upham, Yuu Fujita, Yousuke Kawamoto, Yoshinori Tanaka, Bong Shik Song, Takashi Asano, and Susumu Noda
Opt. Express 21(3) 3809-3817 (2013)

Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control

Jeremy Upham, Yoshinori Tanaka, Takashi Asano, and Susumu Noda
Opt. Express 16(26) 21721-21730 (2008)

Dynamic tuning of the Q factor in a photonic crystal nanocavity through photonic transitions

Bo Wang, Jun-Fang Wu, Chao Li, and Zhi-Yuan Li
Opt. Lett. 43(16) 3945-3948 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [Crossref] [PubMed]
  2. Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  3. B.S. Song, T Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71, 195101 (2005).
    [Crossref]
  4. T. Baba, “Slow light in photonics crystals,” Nat. Photon. 2, 465–473 (2008).
    [Crossref]
  5. L. O’Faolain, S.A. Schulz, D.M. Beggs, T.P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J.P. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [Crossref]
  6. V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  7. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
    [Crossref]
  8. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007).
    [Crossref]
  9. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16, 21721–21731 (2008).
    [Crossref] [PubMed]
  10. J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
    [Crossref] [PubMed]
  11. J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B.S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
    [Crossref] [PubMed]
  12. A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express 18, 3014–3022 (2010).
    [Crossref] [PubMed]
  13. S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photon. 1, 293–296 (2007).
    [Crossref]
  14. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3, 062001 (2010).
    [Crossref]
  15. D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
    [Crossref] [PubMed]
  16. M. Belotti, J. F. Galisteo-López, S. De Angelis, M. Galli, I Maksymov, L. C. Andreani, D Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624–11636 (2008).
    [PubMed]
  17. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
    [Crossref]
  18. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26, 1396–1403 (2008).
    [Crossref]
  19. T. Tanabe, E. Kuramochi, H. Taniyama, and M. Notomi, “Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p-i-n integrated photonic crystal nanocavity,” Opt. Lett. 35, 3895–3897 (2010).
    [Crossref] [PubMed]
  20. M. Yamaguchi, T. Asano, Y. Sato, and S. Noda, “Photonic quantum computation with waveguide-linked optical cavities and quantum dots,” Preprint at arXiv:1101.3508v1 (2011).
  21. Y. Sugimoto, Y. Yanaka, N. Ikeda, Y. Nakamura, and K. Asakawa, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096 (2004).
    [Crossref] [PubMed]
  22. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [Crossref] [PubMed]
  23. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
    [Crossref] [PubMed]
  24. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [Crossref] [PubMed]
  25. D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
    [Crossref]
  26. D.E. Aspnes, “Recombination at semiconductor surfaces and interfaces,” Surface Sci. 132, 406–421 (1983).
    [Crossref]
  27. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
    [Crossref]
  28. M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
    [Crossref]

2013 (1)

2012 (2)

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

2011 (2)

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

2010 (4)

2008 (5)

2007 (4)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007).
[Crossref]

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photon. 1, 293–296 (2007).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

2005 (2)

B.S. Song, T Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71, 195101 (2005).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

2004 (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
[Crossref]

Y. Sugimoto, Y. Yanaka, N. Ikeda, Y. Nakamura, and K. Asakawa, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

1983 (1)

D.E. Aspnes, “Recombination at semiconductor surfaces and interfaces,” Surface Sci. 132, 406–421 (1983).
[Crossref]

Aboketaf, A.

Akahane, Y.

B.S. Song, T Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71, 195101 (2005).
[Crossref]

Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Andreani, L. C.

Asakawa, K.

Asano, T

B.S. Song, T Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71, 195101 (2005).
[Crossref]

Asano, T.

J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B.S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3, 062001 (2010).
[Crossref]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16, 21721–21731 (2008).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

M. Yamaguchi, T. Asano, Y. Sato, and S. Noda, “Photonic quantum computation with waveguide-linked optical cavities and quantum dots,” Preprint at arXiv:1101.3508v1 (2011).

Aspnes, D.E.

D.E. Aspnes, “Recombination at semiconductor surfaces and interfaces,” Surface Sci. 132, 406–421 (1983).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Baba, T.

T. Baba, “Slow light in photonics crystals,” Nat. Photon. 2, 465–473 (2008).
[Crossref]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Barios, C. A.

V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Beggs, D.

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

Beggs, D.M.

Belotti, M.

Chen, Y.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

De Angelis, S.

Deppe, D.G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Elshaari, A. W.

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

Fujita, M.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
[Crossref]

Fujita, Y.

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

Galisteo-López, J. F.

Galli, M.

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Gibbs, H.M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Hugonin, J.P.

Ikeda, N.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Jalai, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Kampfrath, T.

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

Kawamoto, Y.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Kojima, K.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

Kojima, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

Krauss, T.

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

L. O’Faolain, S.A. Schulz, D.M. Beggs, T.P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J.P. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

Kuipers, L.

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

L. O’Faolain, S.A. Schulz, D.M. Beggs, T.P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J.P. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

Kuramochi, E.

Lalanne, P.

Lipson, M.

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photon. 1, 293–296 (2007).
[Crossref]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007).
[Crossref]

V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Maksymov, I

Mazoyer, S.

Melloni, A.

Morichetti, F.

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Nakamura, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

Nakamura, Y.

Noda, S.

J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B.S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3, 062001 (2010).
[Crossref]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16, 21721–21731 (2008).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

B.S. Song, T Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71, 195101 (2005).
[Crossref]

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
[Crossref]

Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

M. Yamaguchi, T. Asano, Y. Sato, and S. Noda, “Photonic quantum computation with waveguide-linked optical cavities and quantum dots,” Preprint at arXiv:1101.3508v1 (2011).

Notomi, M.

O’Faolain, L.

Panepucci, R. R.

V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

Peyrade, D

Preble, S.

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photon. 1, 293–296 (2007).
[Crossref]

Preble, S. F.

Rey, I.

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

Rotenberg, N.

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Sato, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

M. Yamaguchi, T. Asano, Y. Sato, and S. Noda, “Photonic quantum computation with waveguide-linked optical cavities and quantum dots,” Preprint at arXiv:1101.3508v1 (2011).

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Schulz, S.A.

Shchekin, O.B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Song, B.S.

Spasenovic, M.

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

Sugimoto, Y.

Sugitatsu, A.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
[Crossref]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Takahashi, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

Tanabe, T.

Tanaka, Y.

J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B.S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3, 062001 (2010).
[Crossref]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16, 21721–21731 (2008).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Taniyama, H.

Uesugi, T.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
[Crossref]

Upham, J.

J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B.S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3, 062001 (2010).
[Crossref]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16, 21721–21731 (2008).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

White, T.P.

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Woo, J.C.S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007).
[Crossref]

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photon. 1, 293–296 (2007).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, T. Asano, Y. Sato, and S. Noda, “Photonic quantum computation with waveguide-linked optical cavities and quantum dots,” Preprint at arXiv:1101.3508v1 (2011).

Yanaka, Y.

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Appl. Phys. Express (1)

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3, 062001 (2010).
[Crossref]

Appl. Phys. Lett. (1)

D. Dimitropoulos, R. Jhaveri, R. Claps, J.C.S. Woo, and B. Jalai, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

J. Lightwave Technol. (1)

Jpn J. Appl. Phys. (1)

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of Indium Phosphide compound photonic crystal by Hydrogen Iodide/Xenon inductively coupled plasma etching,” Jpn J. Appl. Phys. 43, L1400–L1402 (2004).
[Crossref]

Nat. Photon. (1)

T. Baba, “Slow light in photonics crystals,” Nat. Photon. 2, 465–473 (2008).
[Crossref]

Nature (5)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Nature Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007).
[Crossref]

Nature Photon. (2)

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photon. 6, 56–61 (2012).
[Crossref]

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photon. 1, 293–296 (2007).
[Crossref]

Nature Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys. 3, 406–410 (2007).
[Crossref]

Opt. Express (7)

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16, 21721–21731 (2008).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B.S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19, 23377–23385 (2011).
[Crossref] [PubMed]

J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B.S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
[Crossref] [PubMed]

A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express 18, 3014–3022 (2010).
[Crossref] [PubMed]

L. O’Faolain, S.A. Schulz, D.M. Beggs, T.P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J.P. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

M. Belotti, J. F. Galisteo-López, S. De Angelis, M. Galli, I Maksymov, L. C. Andreani, D Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624–11636 (2008).
[PubMed]

Y. Sugimoto, Y. Yanaka, N. Ikeda, Y. Nakamura, and K. Asakawa, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

B.S. Song, T Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71, 195101 (2005).
[Crossref]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84, 24309 (2011).
[Crossref]

Phys. Rev. Lett. (1)

D. Beggs, I. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108213901 (2012).
[Crossref] [PubMed]

Science (1)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref] [PubMed]

Surface Sci. (1)

D.E. Aspnes, “Recombination at semiconductor surfaces and interfaces,” Surface Sci. 132, 406–421 (1983).
[Crossref]

Other (1)

M. Yamaguchi, T. Asano, Y. Sato, and S. Noda, “Photonic quantum computation with waveguide-linked optical cavities and quantum dots,” Preprint at arXiv:1101.3508v1 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Schematic of interference-based dynamic Q control using photo-excited free-carriers and thermal tuning. b) When the free carrier lifetime is long, initially the in-plane Q is set to be low, then is increased by free carriers, thus carrier losses are a factor throughout the high Q capture state. c) If the free carrier lifetime is short, an initially high Q system could be lowered by free carriers briefly then return to the high Q state, limiting carrier losses to only a short window when Q was low.
Fig. 2
Fig. 2 a) SEM image of a GaAs single waveguide dynamic Q sample bordered by slits to reduce surface strain. Lattice constant a = 430 nm and hole radius of 0.29a. The line defect is a W1 waveguide and the cavity is an L3 with shifted edge holes. The hetero-interface mirror is 80a past the cavity along the waveguide (not shown). b) Thermal tuning of Q factor. A CW GaN laser thermally tunes the static Q factor ranging from 4000 to > 12, 000 by changing θ.
Fig. 3
Fig. 3 a) Nanocavity vertical emission response to pump-probe measurements with signal and control pulses. The spike and rapid drop-off of the emission indicates that by lowering Q the carriers improve the signal coupling to the cavity and that their short (7 ps) lifetime allow the cavity to quickly return to its high Q value. b) Emission spectra for different Q conditions suggest that the signal pulse is better captured by the well-timed, rapid lowering of Q than in the static high or low state.
Fig. 4
Fig. 4 a) Time-resolved vertical emission under three cases: Static low Q (red), static high Q (blue) and dynamically lowered Q achieving pulse capture (black). b) Light captured in nanocavity released at various times by a second control pulse

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 Q Total = 1 Q v + 1 + cos ( θ ) Q in ,

Metrics