Abstract

We report on the experimental demonstration of a hard x-ray microscopy scheme achieving absorption and phase contrast imaging with a standard laboratory source. The x-ray optical system features two crossed planar waveguides coupled to the primary source. The dual waveguide acts as a secondary micron-sized source, enabling high imaging resolution. Both scanning and full-field imaging modes are demonstrated with the same experimental system, with a resolution of about 2 μm in scanning mode. Examples of absorption, differential phase and retrieved phase depth of thin metal grids and glass micro-spheres are reported as proof of concept of the technique.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011).
    [CrossRef] [PubMed]
  2. P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
    [CrossRef] [PubMed]
  3. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
    [CrossRef]
  4. R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
    [CrossRef]
  5. K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
    [CrossRef]
  6. J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
    [CrossRef] [PubMed]
  7. A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
    [CrossRef]
  8. Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
    [CrossRef] [PubMed]
  9. G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
    [CrossRef]
  10. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995).
    [CrossRef] [PubMed]
  11. C. Larabell C and M. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell.15, 957–962 (2004).
    [CrossRef]
  12. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
    [CrossRef] [PubMed]
  13. B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007).
    [CrossRef] [PubMed]
  14. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
    [CrossRef]
  15. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997).
    [CrossRef]
  16. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11, 2289–2302 (2003).
    [CrossRef] [PubMed]
  17. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
    [CrossRef]
  18. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007).
    [CrossRef]
  19. I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
    [CrossRef] [PubMed]
  20. D. Pelliccia and D. M. Paganin, “X-ray phase imaging with a laboratory source using selective reflection from a mirror,” Opt. Express21, 9308–9314 (2013).
    [CrossRef] [PubMed]
  21. A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
    [CrossRef]
  22. P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
    [CrossRef]
  23. D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
    [CrossRef] [PubMed]
  24. C. Bergemann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett.91, 204801 (2003).
    [CrossRef] [PubMed]
  25. M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Physics13, 103026 (2011).
    [CrossRef]
  26. D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
    [CrossRef]
  27. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  28. K. J. Tsanaktsidis, D. M. Paganin, and D. Pelliccia, “Analytical description of partially coherent propagation and absorption losses in x-ray planar waveguides,” Opt. Lett.38, 1808–1810 (2013).
    [CrossRef] [PubMed]
  29. L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
    [CrossRef]
  30. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).
  31. T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
    [CrossRef]
  32. D. M. Paganin, Coherent X-ray Optics (Oxford University Press, 2006).
    [CrossRef]
  33. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express19, 19781–19789 (2011).
    [CrossRef] [PubMed]

2014 (1)

P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
[CrossRef]

2013 (3)

2011 (4)

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011).
[CrossRef] [PubMed]

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express19, 19781–19789 (2011).
[CrossRef] [PubMed]

M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Physics13, 103026 (2011).
[CrossRef]

2010 (5)

D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
[CrossRef] [PubMed]

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

2009 (3)

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

2008 (1)

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

2007 (4)

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007).
[CrossRef]

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007).
[CrossRef] [PubMed]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
[CrossRef]

2005 (1)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

2004 (1)

C. Larabell C and M. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell.15, 957–962 (2004).
[CrossRef]

2003 (2)

1997 (1)

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997).
[CrossRef]

1996 (1)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

1995 (1)

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995).
[CrossRef] [PubMed]

1980 (1)

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
[CrossRef]

Anderson, E. H.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

Andrews, J. C.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Anton, G.

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

Attwood, D. T.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

Beerlink, A.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Benson, C.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Bergemann, C.

C. Bergemann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett.91, 204801 (2003).
[CrossRef] [PubMed]

Bleuet, P.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Böhnel, M.

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

Boye, P.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).

Budai, J. D.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011).
[CrossRef] [PubMed]

Bukreeva, I

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Bukreeva, I.

D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
[CrossRef] [PubMed]

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Bunk, O.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
[CrossRef]

Burghammer, M.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Carbaugh, D.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Cedola, A.

D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
[CrossRef] [PubMed]

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Chabli, A.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Chao, W.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

Chapman, D.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Chen, J.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Chevalier, N.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Christ, O.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
[CrossRef]

Cloetens, P.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Cui, H.

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

David, C.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
[CrossRef]

Davis, T.

De Caro, L.

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Dierolf, M.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Duewer, F.

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

Durst, J.

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

Ebensperger, T.

P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
[CrossRef]

Falkenberg, G.

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Feldkamp, J. M.

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Feser, M.

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007).
[CrossRef] [PubMed]

Firsching, M.

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

Fogarty, D. P.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Fratini, M.

Fuesz, P.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Gao, D.

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

Gerardino, A.M.

Gergaud, P.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Giannini, C.

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Giewekemeyer, K.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Goldschmidt, A.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Guagliardi, A.

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Guan, Y.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Gureyev, T.

Gureyev, T. E.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

Hanke, R.

P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
[CrossRef]

Harteneck, B. D.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

Holt, M. V.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Hönig, S.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Hoppe, R.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Hornberger, B.

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007).
[CrossRef] [PubMed]

Howells, M.

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995).
[CrossRef] [PubMed]

Ice, G. E.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011).
[CrossRef] [PubMed]

Ilie, M.

D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
[CrossRef] [PubMed]

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Ishikawa, T.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Jacobsen, C.

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007).
[CrossRef] [PubMed]

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995).
[CrossRef] [PubMed]

Jark, W.

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Kalbfleisch, S.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Kewish, C. M.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Keymeulen, H.

C. Bergemann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett.91, 204801 (2003).
[CrossRef] [PubMed]

Khelashvili, G.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Kirz, J.

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995).
[CrossRef] [PubMed]

Kline, D.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Lagomarsino, S.

D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
[CrossRef] [PubMed]

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Larabell C, C.

C. Larabell C and M. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell.15, 957–962 (2004).
[CrossRef]

Le Gros, M.

C. Larabell C and M. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell.15, 957–962 (2004).
[CrossRef]

Liddle, J. A.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

Liu, G.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

Mariolle, D.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Maser, J.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Matsubara, E.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Mayo, S.

McNulty, I.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Metzger, T. H.

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Michel, T.

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

Miller, P.

Mocuta, C.

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Morgan, K. S.

Muehleman, C.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Nesch, I.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Niemann, B.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
[CrossRef]

Nishino, Y.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Olivo, A.

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007).
[CrossRef]

Osterhoff, M.

M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Physics13, 103026 (2011).
[CrossRef]

Paganin, D.

Paganin, D. M.

Pang, J. W. L.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011).
[CrossRef] [PubMed]

Patommel, J.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Patommela, J.

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Pelliccia, D.

Pfeiffer, F.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
[CrossRef]

Pianetta, P.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Pogany, A.

S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11, 2289–2302 (2003).
[CrossRef] [PubMed]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

Rakete, C.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Reimers, N.

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Reinhart, B.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Rose, V.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Rudolph, D.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
[CrossRef]

Salditt, T.

M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Physics13, 103026 (2011).
[CrossRef]

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Samberg, D.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Scarinci, F.

D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010).
[CrossRef] [PubMed]

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Schmahl, G.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
[CrossRef]

Schöder, S.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

Schroer, C. G.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Schropp, A.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Schwab, A.

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Shu, D.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Siu, K. K. W.

Sorrentino, A.

Speller, R.

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007).
[CrossRef]

Stahlhut, P.

P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
[CrossRef]

Stephan, S.

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Stephenson, G. B.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Stevenson, A.

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

Susini, J.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Takahashi, Y.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Talla, P. T.

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

Thibault, P.

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Tian, Y.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Tkachuk, A.

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

Tsanaktsidis, K. J.

Tsutsumi, R.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Tucoulou, R.

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

Tzvetkov, T.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

van der Veen, J. F.

C. Bergemann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett.91, 204801 (2003).
[CrossRef] [PubMed]

Walus, A. C.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Wang, S.

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

Weitkamp, T.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
[CrossRef]

Wellenreuther, G.

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Wilkins, S.

Wilkins, S. W.

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

Winarski, R. P.

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Wu, Z.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Xiong, Y.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Yamauchi, K.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Yang, Y.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Yun, W.

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

Zabler, S.

P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
[CrossRef]

Zettsu, N.

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Zhang, X.

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007).
[CrossRef]

J. Microscopy (1)

A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011).
[CrossRef]

J. Synchrotron Rad. (1)

R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013).
[CrossRef]

Mol. Biol. Cell. (1)

C. Larabell C and M. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell.15, 957–962 (2004).
[CrossRef]

Nano Lett. (1)

Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010).
[CrossRef] [PubMed]

Nature (2)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005).
[CrossRef] [PubMed]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996).
[CrossRef]

Nature Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006).
[CrossRef]

New J. Physics (1)

M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Physics13, 103026 (2011).
[CrossRef]

Nucl. Instrum. Meth. Phys. Res. B (1)

P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (2)

T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009).
[CrossRef]

C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008).
[CrossRef]

Phys. Rev. Lett. (1)

C. Bergemann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett.91, 204801 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (1)

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010).
[CrossRef]

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995).
[CrossRef] [PubMed]

Quantum Rev. Biophys. (1)

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980).
[CrossRef]

Rev. Sci. Instrum. (3)

P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009).
[CrossRef] [PubMed]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997).
[CrossRef]

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009).
[CrossRef] [PubMed]

Science (1)

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011).
[CrossRef] [PubMed]

Spectroc. Acta B (1)

D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007).
[CrossRef]

Ultramicroscopy (1)

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007).
[CrossRef] [PubMed]

Z. Kristallogr. (1)

A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007).
[CrossRef]

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).

D. M. Paganin, Coherent X-ray Optics (Oxford University Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the hard x-ray microscope (not to scale). The two crossed WGs, labeled WG1 and WG2 respectively are illuminated by the primary source. WGs and samples are placed in air while a vacuum tube (not shown) is placed between sample and detector to limit x-ray absorption and scattering by air. Two possible samples configurations are shown. In scanning mode the sample is placed very closed to the double WG to exploit the small beam size. In full-field mode the sample is placed farther away from the WGs and the geometrical magnififcation of the setup guarantees high resolution imaging.

Fig. 2
Fig. 2

(a) Image of the diffracted beam from the dual WG recorded at the detector position. Both WGs are aligned parallel to the optic axis. (b) Normalized modulus of the autocorrelation function obtained from the intensity in (a). (c) Normalized modulus of the autocorrelation function obtained when both WGs are misaligned (see text). (d) Line pro-files of the modulus of the autocorrelation function in the aligned case, along the horizontal (red) and vertical (black) direction. (e) Line profiles of the modulus of the autocorrelation function in the misaligned case, along the horizontal (red) and vertical (black) direction. (f) Far field spectrum measured with the Medipix2 detector with the waveguide (violet) and without it (blue). The spectra are normalized to their respective maximum value. A shift of the central energy of about 1 keV is observed.

Fig. 3
Fig. 3

Experimental results relative to Ni mesh and glass micro-spheres. (a) Absorption image of the Ni mesh. (b) Refraction image γx. (c) Refraction image γy. (d) Unweighted phase map of the Ni mesh.(e) Retrieved projected thickness of the mesh, using the data in (d). (f) Phase map calculated using the weighting operation. (g) Line profiles along the red dashed line marked in (e). (h) Absorption image of the glass micro-spheres. (i) Calculated phase shift of the micro-spheres.

Fig. 4
Fig. 4

Images of the Cu mesh. (a) Absorption image. (b) Refraction image γx. (c) Refraction image γy. (d) Unweighted phase map. (e) Phase map after weithing operation. (f) Retrieved projected thickness using the image in (e). (g) Line profile of the absorption image (blue, left axis) and the phase image (red, right axis). (e) Full field image of the same specimen.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C ( x ) = f ( x ) f * ( x ) = [ I ( u ) ] ,
γ x = 1 k d ϕ ( x ) d x = tan ( Δ x z 2 ) ,
x c = ( i = 1 N I i x i ) / ( i = 1 N I i ) ,
t ( x , y ) x = γ x δ .
t ( x , y ) = 1 [ ( T ( x , y ) ) i k x k y ] .

Metrics