Abstract

Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagomé type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment increases the coherence time of the internal state transfer due to an increase in beam pointing stability.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
    [CrossRef] [PubMed]
  2. B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
    [CrossRef]
  3. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
    [CrossRef] [PubMed]
  4. Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
    [CrossRef]
  5. A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
    [CrossRef]
  6. Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
    [CrossRef] [PubMed]
  7. J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
    [CrossRef] [PubMed]
  8. H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
    [CrossRef] [PubMed]
  9. A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
    [CrossRef]
  10. J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
    [CrossRef] [PubMed]
  11. N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express17(19), 16933–16940 (2009).
    [CrossRef] [PubMed]
  12. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett.35(17), 2922–2924 (2010).
    [CrossRef] [PubMed]
  13. J. C. Travers, W. K. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B28, A11–A26 (2011).
    [CrossRef]
  14. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J. L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett.34(19), 2888–2890 (2009).
    [CrossRef] [PubMed]
  15. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  16. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
    [CrossRef]
  17. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express21(23), 28597–28608 (2013).
    [CrossRef] [PubMed]
  18. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
    [CrossRef] [PubMed]
  19. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
    [CrossRef]
  20. J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
    [CrossRef]
  21. I. H. Malitson, “Interspecimen Comparison of Refractive Index of Fused Silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965).
    [CrossRef]
  22. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010).
    [CrossRef] [PubMed]
  23. S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A57(5), 3748–3752 (1998).
    [CrossRef]
  24. R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
    [CrossRef]
  25. J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
    [CrossRef] [PubMed]
  26. Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” arXiv preprint, http://arxiv.org/abs/1405.2333 (2014).

2014 (1)

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

2013 (1)

2012 (4)

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

2011 (4)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

J. C. Travers, W. K. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B28, A11–A26 (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (2)

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

2007 (3)

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

2005 (1)

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

1998 (1)

S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A57(5), 3748–3752 (1998).
[CrossRef]

1996 (1)

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

1965 (1)

Alharbi, M.

Amairi, S.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Atkin, D. M.

Auguste, J. L.

Beaudou, B.

Becher, C.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Becker, T.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Benabid, F.

Benhelm, J.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Bergquist, J. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Biercuk, M. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Birks, T. A.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Blakestad, R. B.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Blatt, R.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Bollinger, J. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Booth, T.

Bowler, R.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Bradley, T.

Bradley, T. D.

Britton, J.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Britton, J. W.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Brown, K. R.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Burger, S.

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

Chang, W. K.

Chek-al-Kar, D.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Chiaverini, J.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Chou, C. W.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Chwalla, M.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Debord, B.

Diddams, S. A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Dumke, R.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Dür, W.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Dutin, C. F.

Février, S.

Fortier, T. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Fourcade-Dutin, C.

Freericks, J. K.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Friedenauer, A.

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

Gaebler, J. P.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Gebert, F.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

Gérôme, F.

Glueckert, J. T.

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

Gühne, O.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Häffner, H.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Hammerer, K.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Hanneke, D.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Hänsel, W.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Hemmerling, B.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

Hölzer, P.

Home, J. P.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Humbert, G.

Hume, D. B.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Joly, N. Y.

Jost, J. D.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Keith, A. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Klose, R.

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

Knight, J. C.

Knill, E.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Koelemeij, J. C. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Körber, T.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Labruyère, A.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Langer, C.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Leibfried, D.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Leroux, I. D.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Lin, Y.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Liu, T.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Lörch, N.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Lu, Z. H.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Malitson, I. H.

Meier, A. M.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Mielke, M.

Milburn, G. J.

S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A57(5), 3748–3752 (1998).
[CrossRef]

Mlynek, J. A.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

Nazarkin, A.

Newbury, N. R.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Nigg, D.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

Nold, J.

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Ospelkaus, C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

Ozeri, R.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Peng, X.

Podlipensky, A.

Pomplun, J.

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

Porras, D.

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

Rapol, U. D.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Reichle, R.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Riebe, M.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

Roos, C. F.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Rosenband, T.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Russell, P. St. J.

Sawyer, B. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Schaetz, T.

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

Scharnhorst, N.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Scharrer, M.

Schmidt, F.

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

Schmidt, P. O.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Schmitz, H.

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

Schneider, S.

S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A57(5), 3748–3752 (1998).
[CrossRef]

Seidelin, S.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Sherstov, I. V.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Stejskal, A.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Swann, W. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Tan, T. R.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Tao, L.

Travers, J. C.

Uys, H.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

VanDevender, A. P.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

Viale, P.

Vincetti, L.

Walther, H.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Wan, Y.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

Wang, C. C. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

Wang, L. J.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Wang, Y. H.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Wang, Y. Y.

Wesenberg, J. H.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Wilson, A. C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

Wineland, D. J.

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Wong, G. K. L.

Wübbena, J. B.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Yalin, A. P.

Yamamoto, N.

Zhang, J.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Zhao, Y. N.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Zschiedrich, L.

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

Appl. Phys. B (2)

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B104(3), 583–590 (2011).
[CrossRef]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B105(4), 741–748 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss Calculations for Antiresonant Wave-Guides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nat Commun (1)

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat Commun5, 3096 (2014).
[CrossRef] [PubMed]

Nat. Phys. (1)

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, “Simulating a quantum magnet with trapped ions,” Nat. Phys.4(10), 757–761 (2008).
[CrossRef]

Nature (2)

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature484(7395), 489–492 (2012).
[CrossRef] [PubMed]

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature438(7068), 643–646 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, “Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21 S0-5s5p 3P0 narrowline transition,” Opt. Commun.273(2), 526–531 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A57(5), 3748–3752 (1998).
[CrossRef]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A75(4), 042329 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, “Randomized benchmarking of multiqubit gates,” Phys. Rev. Lett.108(26), 260503 (2012).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger, “Finite element simulation of radiation losses in photonic crystal fibers,” Phys. Status Solidi A204(11), 3822–3837 (2007).
[CrossRef]

Science (1)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Other (1)

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” arXiv preprint, http://arxiv.org/abs/1405.2333 (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scanning electron micrograph (SEM) of fiber sample A. (b) Close-up of the core structure of Fiber A with core-wall thickness measurements. The core diameter (measured flat-to-flat) is ~19 µm. (c) Similar close-up for Fiber B, with flat-to-flat core diameter of ~20 µm.

Fig. 2
Fig. 2

The loss of LP01-like modes at λ = 280 nm in the simplified kagomé-structure shown in the inset, plotted against core-wall thickness. The main loss resonance according to Eq. (1) occurs at hcw≈255 nm (black dotted line). The results were calculated numerically using FEM. The accuracy of the calculation is limited to loss values above 0.001 dB/m.

Fig. 3
Fig. 3

(a) Cut-back loss measurement for fiber A (blue dots) and fiber B (black stars) at a wavelength of 280 nm. The dB scale is normalized so that 0 dB corresponds to the transmitted power of the shortest fiber piece used in each cut-back measurement. The linear fits correspond to 2.9 dB/m (blue, fiber A) and 0.8 dB/m (black, fiber B). (b) Normalized transmission (center = 0.7) plotted radially versus orientation of the linearly polarized input light for 1 m long fibers. The measurement on fiber A (blue dots) exhibits a consistent maximum polarization-dependent loss of ~20%. An equivalent measurement for fiber B (black stars) showed a maximum polarization dependent loss of ~10%.

Fig. 4
Fig. 4

Measured near-field intensity profiles from fiber A for different transverse positions of the input beam. The coordinates refer to the horizontal and vertical displacements (in µm) of the focused laser spot from the core center. The intensity profiles are not perfectly symmetrical with respect to off-center displacements; this could both be due to asymmetry in the fiber structure as well as because the transverse position could not be controlled to better than ~1 µm.

Fig. 5
Fig. 5

Relative transmission in the kagomé-PCF over time when 15 mW of 280 nm CW light is coupled into the fiber.

Fig. 6
Fig. 6

Raman Rabi oscillations (a) without kagomé-PCF and (b) with kagomé-PCF in the set-up. The decay rate is extracted from a fit to Eq. (2) and the mean value over 7 measurements is displayed in the corresponding graphs. The residual decay is dominated by off-resonant excitation from the Raman lasers due to the limited Raman detuning of 9.2 GHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k h cw n g 2 (λ) n m 2 =qπ, q=1,2,3...
P | ( t )= 1 2 [ 1+ e γt cos( Ω 0 t ) ],

Metrics