Abstract

We present a novel approach for incoherent optical frequency-domain reflectometry based on a frequency-swept sinusoidal optical signal and a Kerr phase-interrogator. The novel approach eliminates dependence on the laser coherence-length allowing for long-range operation. Long-range detection of reflection points as far as 151 km at a spatial-resolution of 11.2 cm is experimentally demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39, 693–695 (1981).
    [CrossRef]
  2. H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7, 3–10 (1989).
    [CrossRef]
  3. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol.11, 1377–1384 (1993).
    [CrossRef]
  4. J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
    [CrossRef]
  5. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter,” Appl. Opt.37, 1735–1740 (1998).
    [CrossRef]
  6. G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
    [CrossRef]
  7. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” Photonics Tech. Lett.17, 1827–1829 (2005).
    [CrossRef]
  8. X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
    [CrossRef]
  9. X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated ofdr,” Opt. Express19, 19122–19128 (2011).
    [CrossRef] [PubMed]
  10. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
    [CrossRef]
  11. R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt.20, 1840–1844 (1981).
    [CrossRef] [PubMed]
  12. S. Venkatesh and D. W. Dolfi, “Incoherent frequency modulated cw optical reflectometry with centimeter resolution,” Appl. Opt.29, 1323–1326 (1990).
    [CrossRef] [PubMed]
  13. B. Schlemmer, “A simple and very effective method with improved sensitivity for fault location in optical fibers,” IEEE Photon. Technol. Lett.3, 1037–1039 (1991).
    [CrossRef]
  14. C. Baker and X. Bao, “Displacement sensor based on kerr induced phase-modulation of orthogonally polarized sinusoidal optical signals,” Opt. Express22, 9095–9100 (2014).
    [CrossRef] [PubMed]
  15. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett.21, 1966–1968 (1996).
    [CrossRef] [PubMed]
  16. M. Rochette, C. Baker, and R. Ahmad, “All-optical polarization-mode dispersion monitor for return-to-zero optical signals at 40 gbits/s and beyond,” Opt. Lett.35, 3703–3705 (2010).
    [CrossRef] [PubMed]
  17. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors12, 8601–8639 (2012).
    [CrossRef] [PubMed]

2014 (1)

2013 (1)

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

2012 (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors12, 8601–8639 (2012).
[CrossRef] [PubMed]

X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
[CrossRef]

2011 (1)

2010 (1)

2005 (1)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” Photonics Tech. Lett.17, 1827–1829 (2005).
[CrossRef]

1998 (1)

1997 (1)

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
[CrossRef]

1996 (2)

G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
[CrossRef]

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett.21, 1966–1968 (1996).
[CrossRef] [PubMed]

1993 (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol.11, 1377–1384 (1993).
[CrossRef]

1991 (1)

B. Schlemmer, “A simple and very effective method with improved sensitivity for fault location in optical fibers,” IEEE Photon. Technol. Lett.3, 1037–1039 (1991).
[CrossRef]

1990 (1)

1989 (1)

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7, 3–10 (1989).
[CrossRef]

1981 (2)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39, 693–695 (1981).
[CrossRef]

R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt.20, 1840–1844 (1981).
[CrossRef] [PubMed]

Ahmad, R.

Araki, N.

X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
[CrossRef]

Baker, C.

Bao, X.

Barfuss, H.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7, 3–10 (1989).
[CrossRef]

Boskovic, A.

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol.11, 1377–1384 (1993).
[CrossRef]

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7, 3–10 (1989).
[CrossRef]

Chen, H.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors12, 8601–8639 (2012).
[CrossRef] [PubMed]

Chernikov, S. V.

Ding, Z.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Dolfi, D. W.

Du, Y.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39, 693–695 (1981).
[CrossRef]

Fan, X.

X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
[CrossRef]

X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated ofdr,” Opt. Express19, 19122–19128 (2011).
[CrossRef] [PubMed]

Froggatt, M.

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” Photonics Tech. Lett.17, 1827–1829 (2005).
[CrossRef]

Gisin, N.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
[CrossRef]

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol.11, 1377–1384 (1993).
[CrossRef]

Gruner-Nielsen, L.

Han, Q.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Ito, F.

X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
[CrossRef]

X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated ofdr,” Opt. Express19, 19122–19128 (2011).
[CrossRef] [PubMed]

Jiang, J.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” Photonics Tech. Lett.17, 1827–1829 (2005).
[CrossRef]

Koshikiya, Y.

X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
[CrossRef]

X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated ofdr,” Opt. Express19, 19122–19128 (2011).
[CrossRef] [PubMed]

Levring, O. A.

Liu, K.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Liu, T.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

MacDonald, R. I.

Meng, Z.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Moore, J.

Mussi, G.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
[CrossRef]

Passy, R.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
[CrossRef]

Rochette, M.

Schlemmer, B.

B. Schlemmer, “A simple and very effective method with improved sensitivity for fault location in optical fibers,” IEEE Photon. Technol. Lett.3, 1037–1039 (1991).
[CrossRef]

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” Photonics Tech. Lett.17, 1827–1829 (2005).
[CrossRef]

Taylor, J. R.

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39, 693–695 (1981).
[CrossRef]

Venkatesh, S.

Von der Weid, J. P.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
[CrossRef]

vonderWeid, J. P.

G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
[CrossRef]

Yao, X. S.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39, 693–695 (1981).
[CrossRef]

Electron. Lett. (1)

G. Mussi, N. Gisin, R. Passy, and J. P. vonderWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32, 926–927 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

X. Fan, Y. Koshikiya, N. Araki, and F. Ito, “Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Technol. Lett.24, 1288–1291 (2012).
[CrossRef]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range ofdr beyond laser coherence length,” IEEE Photon. Technol. Lett.25, 202–205 (2013).
[CrossRef]

B. Schlemmer, “A simple and very effective method with improved sensitivity for fault location in optical fibers,” IEEE Photon. Technol. Lett.3, 1037–1039 (1991).
[CrossRef]

J. Lightwave Technol. (3)

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7, 3–10 (1989).
[CrossRef]

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol.11, 1377–1384 (1993).
[CrossRef]

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15, 1131–1141 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Photonics Tech. Lett. (1)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” Photonics Tech. Lett.17, 1827–1829 (2005).
[CrossRef]

Sensors (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors12, 8601–8639 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of (a) the I-OFDR setup based on a Kerr phase-interrogator, and illustrations of the spectrum and the power trace of (b) the CW laser signal, (c) the sinusoidal laser signal, (d) the combined reference and reflected sinusoidal signals, (e) the phase-modulated sinusoidal signal, and (f) the filtered side-band. RF: radio-frequency; CW: continuous-wave; EOM: electro-optic modulator; FUT: fiber under test; FPS: fiber polarization splitter; FPC: fiber polarization combiner; EDFA: Erbium-doped fiber amplifier; PD: photo-diode.

Fig. 2
Fig. 2

(a) Measured P1 (t), (b) magnified section of P1 (t), (c) relative reflectivity as a function of distance in the fiber under test, and (d) magnified section of the reflection at dpeak = 2272.49278 m.

Fig. 3
Fig. 3

(a) Relative reflectivity for two concatenated fibers, (b) magnified image of the peak at dpeak = 6.6480 km, (c) relative reflectivity for a 151 km long fiber, and (d) reflection peaks at the end of the 151 km fiber (solid curve) and at the end of a 37.4 cm fiber cord connected to the 151 km fiber (dashed curve).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A = P p / 2 cos ( π f r e f t + ϕ ) exp [ j γ P ( t ) L ] ,
A = P p / 2 cos ( π f s e n t + ϕ ) exp [ j γ P ( t ) L ] ,
P ( t ) = P p / 2 [ cos 2 ( π f ref t + ϕ ) + cos 2 ( π f sen t + ϕ ) ] .
P 1 ( t ) P 0 ( t ) = J 1 2 [ ( ϕ SPM / 2 ) cos ( π f d t + ϕ Δ ) ] + J 2 2 [ ( ϕ SPM / 2 ) cos ( π f d t + ϕ Δ ) ] J 0 2 [ ( ϕ SPM / 2 ) cos ( π f d t + ϕ Δ ) ] + J 1 2 [ ( ϕ SPM / 2 ) cos ( π f d t + ϕ Δ ) ] ,
P 1 ( t ) = P 1 max cos 2 ( π f d t + ϕ Δ ) ,

Metrics