Abstract

In this paper, a novel hybrid time-frequency adaptive equalization algorithm based on a combination of frequency domain equalization (FDE) and decision-directed least mean square (DD-LMS) is proposed and experimentally demonstrated in a Nyquist single carrier visible light communication (VLC) system. Adopting this scheme, as well with 512-ary quadrature amplitude modulation (512-QAM) and wavelength multiplexing division (WDM), an aggregate data rate of 4.22-Gb/s is successfully achieved employing a single commercially available red-green-blue (RGB) light emitting diode (LED) with low bandwidth. The measured Q-factors for 3 wavelength channels are all above the Q-limit. To the best of our knowledge, this is the highest data rate ever achieved by employing a commercially available RGB-LED.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
    [CrossRef]
  2. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express21(1), 1203–1208 (2013).
    [CrossRef] [PubMed]
  3. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
    [CrossRef] [PubMed]
  4. Y. Wang, C. Yang, Y. Wang, and N. Chi, “Gigabit polarization division multiplexing in visible light communication,” Opt. Lett.39(7), 1823–1826 (2014).
    [CrossRef] [PubMed]
  5. P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag.51(8), 148–154 (2013).
    [CrossRef]
  6. J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs”, in Opt.Fiber commun.Conf.(OFC), San Diego, CA 2010, OThH.3.
  7. D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
    [CrossRef]
  8. N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett.12(1), 22–25 (2014).
  9. Y. Wang, R. Li, Y. Wang, and Z. Zhang, “3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED,” in Opt.Fiber commun.Conf.(OFC), San Francisco, CA 2014, Th1F.1.
  10. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
    [CrossRef]
  11. Z. Zheng, R. Ding, F. Zhang, and Z. Chen, “1.76Tb/s Nyquist PDM 16QAM signal transmission over 714km SSMF with the modified SCFDE technique,” Opt. Express21(15), 17505–17511 (2013).
    [CrossRef] [PubMed]
  12. L. R. Litwin, M. D. Zoltowski, T. J. Endres, and S. N. Hulyalkar, “Blended CMA: smooth, adaptive transfer from CMA to DD-LMS,” in Wireless Communications and Networking Conference (WCNC),New Orleans, LA, 797–800(1999).
    [CrossRef]
  13. B. Nebendahl, R. Schmogrow, T. Dennis, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Winter, M. Huebener, W. Freude, C. Koos, and J. Leuthold, “Quality Metrics in Optical Modulation Analysis: EVM and its relation to Q-factor, OSNR, and BER,” in Asia Communications and Photonics Conference(ACP), Guangzhou China, 2012, paper AF3G.2.
    [CrossRef]

2014

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett.12(1), 22–25 (2014).

Y. Wang, C. Yang, Y. Wang, and N. Chi, “Gigabit polarization division multiplexing in visible light communication,” Opt. Lett.39(7), 1823–1826 (2014).
[CrossRef] [PubMed]

2013

2012

2011

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

2002

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Ariyavisitakul, S. L.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Benyamin-Seeyar, A.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Chen, Z.

Chi, N.

Choudhury, P.

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Ciaramella, E.

Corsini, R.

Cossu, G.

Dawson, M. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Ding, R.

Eidson, B.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

Endres, T. J.

L. R. Litwin, M. D. Zoltowski, T. J. Endres, and S. N. Hulyalkar, “Blended CMA: smooth, adaptive transfer from CMA to DD-LMS,” in Wireless Communications and Networking Conference (WCNC),New Orleans, LA, 797–800(1999).
[CrossRef]

Falconer, D.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Ghassemlooy, Z.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag.51(8), 148–154 (2013).
[CrossRef]

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

Haigh, P. A.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag.51(8), 148–154 (2013).
[CrossRef]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Huang, X.

N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett.12(1), 22–25 (2014).

Hulyalkar, S. N.

L. R. Litwin, M. D. Zoltowski, T. J. Endres, and S. N. Hulyalkar, “Blended CMA: smooth, adaptive transfer from CMA to DD-LMS,” in Wireless Communications and Networking Conference (WCNC),New Orleans, LA, 797–800(1999).
[CrossRef]

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Khalid, A. M.

Litwin, L. R.

L. R. Litwin, M. D. Zoltowski, T. J. Endres, and S. N. Hulyalkar, “Blended CMA: smooth, adaptive transfer from CMA to DD-LMS,” in Wireless Communications and Networking Conference (WCNC),New Orleans, LA, 797–800(1999).
[CrossRef]

Lu, X.

N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett.12(1), 22–25 (2014).

McKendry, J. J. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Papakonstantinou, I.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag.51(8), 148–154 (2013).
[CrossRef]

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag.51(8), 148–154 (2013).
[CrossRef]

Shang, H.

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Wang, Y.

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Yang, C.

Yu, J.

Zhang, F.

Zheng, Z.

Zoltowski, M. D.

L. R. Litwin, M. D. Zoltowski, T. J. Endres, and S. N. Hulyalkar, “Blended CMA: smooth, adaptive transfer from CMA to DD-LMS,” in Wireless Communications and Networking Conference (WCNC),New Orleans, LA, 797–800(1999).
[CrossRef]

Chin. Opt. Lett.

N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett.12(1), 22–25 (2014).

IEEE Commun. Mag.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag.51(8), 148–154 (2013).
[CrossRef]

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett.26(7), 637–640 (2014).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs”, in Opt.Fiber commun.Conf.(OFC), San Diego, CA 2010, OThH.3.

Y. Wang, R. Li, Y. Wang, and Z. Zhang, “3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED,” in Opt.Fiber commun.Conf.(OFC), San Francisco, CA 2014, Th1F.1.

L. R. Litwin, M. D. Zoltowski, T. J. Endres, and S. N. Hulyalkar, “Blended CMA: smooth, adaptive transfer from CMA to DD-LMS,” in Wireless Communications and Networking Conference (WCNC),New Orleans, LA, 797–800(1999).
[CrossRef]

B. Nebendahl, R. Schmogrow, T. Dennis, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Winter, M. Huebener, W. Freude, C. Koos, and J. Leuthold, “Quality Metrics in Optical Modulation Analysis: EVM and its relation to Q-factor, OSNR, and BER,” in Asia Communications and Photonics Conference(ACP), Guangzhou China, 2012, paper AF3G.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The architecture of the proposed VLC system based on hybrid time-frequency adaptive equalization algorithm (AWG: arbitrary waveform generator, P/S: parallel to serial, EA: electrical amplifier, LPF: low-pass filter, DC: direct current, OSC: real-time oscilloscope).

Fig. 2
Fig. 2

The skeleton structure of DD-LMS equalizer.

Fig. 3
Fig. 3

The measured frequency response of three individual VLC links.

Fig. 4
Fig. 4

The measured electric spectra of (a) original SC-FDE signal; (b) after red color LED transmission; (c) after green color LED transmission; (d) after blue color LED transmission.

Fig. 5
Fig. 5

Q-factor performance versus number of taps.

Fig. 6
Fig. 6

Q-factor performance w- and w/o DD-LMS of (a) red color LED; (b) green color LED; (c) blue color LED.

Fig. 7
Fig. 7

Q-factor performance with different TSs and w- or w/o DD-LMS of (a) red color LED; (b) green color LED; (c) blue color LED.

Fig. 8
Fig. 8

The measured overall data rate as a function of transmission distance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y(k)= w H (k)X(k)
w(k)= [ w 0 (k), w 1 (k), w 2 (k),, w L (k)] T
X(k)= [x(k),x(k1),x(k2),,x(kL+1)] T
e(k)=d(k)y(k)
w(k+1)=w(k)+μ e (k)X(k)

Metrics