Abstract

We demonstrate two types of combinatorial color arrays based on the Fabry-Perot (FP) micro-resonators in monolithic architecture. Optical micro-resonators corresponding to color elements are constructed using a soluble dielectric material between two transreflective layers by transfer-printing in either a pattern-by-pattern or a pattern-on-pattern fashion. The color palette depends primarily on the thickness and the refractive index of a dielectric material embedded in the micro-resonator. A self-defined lateral gap between two adjacent color elements provides the functionality of light-blocking by the underlying background layer. A prototype of a liquid crystal display incorporated with our combinatorial color array is also demonstrated. This monolithic integration of different FP micro-resonators leads to a versatile platform to build up a new class of color arrays for a variety of visual applications including displays and coloration devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
    [CrossRef] [PubMed]
  2. O. L. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007).
    [CrossRef] [PubMed]
  3. Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
    [CrossRef] [PubMed]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [CrossRef]
  5. T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
    [CrossRef] [PubMed]
  6. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [CrossRef] [PubMed]
  7. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [CrossRef]
  8. A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
    [CrossRef]
  9. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
    [CrossRef]
  10. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
    [CrossRef]
  11. Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
    [CrossRef]
  12. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
    [CrossRef]
  13. H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
    [CrossRef]
  14. S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
    [CrossRef] [PubMed]
  15. J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
    [CrossRef]
  16. Y.-T. Yoon and S.-S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18(5), 5344–5349 (2010).
    [CrossRef] [PubMed]
  17. Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
    [CrossRef] [PubMed]
  18. H.-S. Lee, Y.-T. Yoon, S.-S. Lee, S.-H. Kim, and K.-D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [CrossRef] [PubMed]
  19. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
    [CrossRef] [PubMed]
  20. H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
    [CrossRef] [PubMed]
  21. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
    [CrossRef] [PubMed]
  22. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
    [CrossRef] [PubMed]
  23. H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
    [CrossRef] [PubMed]
  24. G. R. Fowles, Introduction to Modern Optics (Courier Dover Publications, 1975).
  25. J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
    [CrossRef]
  26. J. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
    [CrossRef]
  27. W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
    [CrossRef]
  28. A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
    [CrossRef] [PubMed]

2014 (3)

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

2013 (2)

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef] [PubMed]

2012 (1)

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[CrossRef]

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

2010 (3)

Y.-T. Yoon and S.-S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18(5), 5344–5349 (2010).
[CrossRef] [PubMed]

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
[CrossRef]

2009 (2)

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
[CrossRef] [PubMed]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

2008 (3)

Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

2007 (3)

2006 (1)

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

2003 (1)

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

2002 (1)

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
[CrossRef]

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

1991 (1)

J. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

1990 (1)

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Al-Daous, M.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
[CrossRef]

Andreadakis, N.

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Baumberg, J. J.

Berreman, D.

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Blanford, C. F.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
[CrossRef]

Bowen, A. M.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

Carlson, A.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

Chen, C. W.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Chen, Y. H.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Choi, K. C.

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Choi, S.-E.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Choi, W.

W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
[CrossRef]

Cohen, R. E.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[CrossRef] [PubMed]

Do, Y. S.

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Dong, B. Q.

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Fudouzi, H.

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[CrossRef] [PubMed]

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Fujishima, A.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Ge, J.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Gu, Z. Z.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Guo, J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Guo, L. J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef] [PubMed]

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Hollowell, A. E.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef] [PubMed]

Huang, Y.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

Huang, Z. Y.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Huard, C. M.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Hwang, B. Y.

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Hwang, H.

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Ju, B. K.

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Kaplan, A. F.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Kim, H.

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Kim, J.

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Kim, M.-H.

W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
[CrossRef]

Kim, S. H.

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
[CrossRef] [PubMed]

Kim, S.-H.

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Kwon, S.

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Lee, D.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[CrossRef] [PubMed]

Lee, H.

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Lee, H.-S.

Lee, K. T.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Lee, K.-D.

Lee, S. M.

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Lee, S. Y.

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

Lee, S.-D.

W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
[CrossRef]

J. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Lee, S.-S.

Lin, C.

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Lin, F.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Lin, H. W.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Lin, L. Y.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Lin, W. C.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Liu, F.

Liu, X. H.

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Na, Y.-J.

W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
[CrossRef]

Nakajima, R.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Nuzzo, R. G.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

Ok, J. G.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Onishi, H.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Park, J. H.

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Park, J.-D.

Park, W.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Patel, J.

J. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Pursiainen, O. L.

Rogers, J. A.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

Rubner, M. F.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[CrossRef] [PubMed]

Ruhl, T.

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

Saifi, M.

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Saito, A.

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[CrossRef]

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Sato, O.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Sawada, T.

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[CrossRef] [PubMed]

Schroden, R. C.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
[CrossRef]

Shi, H.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Shin, Y. J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Sim, J. Y.

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Spahn, P.

Stein, A.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
[CrossRef]

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Takahashi, K.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

Uetsuka, H.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Viel, B.

Winkler, H.

Wong, K. T.

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

Wu, Y. K.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Wu, Y.-K. R.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef] [PubMed]

Wu, Z.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[CrossRef] [PubMed]

Xu, T.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Yang, S. M.

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

Yang, Y.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Yin, Y.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Yoon, Y.-T.

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Zhang, C.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef] [PubMed]

Zheng, Y. M.

Zi, J.

Adv. Mater. (3)

S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[CrossRef] [PubMed]

Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014).
[CrossRef] [PubMed]

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012).
[CrossRef] [PubMed]

Adv. Opt. Mater. (2)

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[CrossRef]

Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[CrossRef]

J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

J. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

Chem. Mater. (1)

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002).
[CrossRef]

ChemPhysChem (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

Langmuir (1)

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Opt. Express (5)

Org. Electron. (1)

W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010).
[CrossRef]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Sci. Rep. (1)

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater. (1)

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[CrossRef]

Small (2)

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[CrossRef] [PubMed]

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[CrossRef] [PubMed]

Other (1)

G. R. Fowles, Introduction to Modern Optics (Courier Dover Publications, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross sectional view of an elemental micro-resonator for color selection (for example, blue). (b) Schematic illustration of monolithic architecture of three different micro-resonators for different colors (for example, R, G, and B) together with a self-defined lateral gap between adjacent micro-resonators. Here, d, d1, and d2 denote the thickness of the resonant cavity (RC), that of the resonant cavity 1 (RC 1), and that of the resonant cavity 2 (RC 2), respectively, between two transreflective layers (TRL 1 and TRL 2). The refractive indices are n, n1, and n2 for the RC, RC 1, and RC 2, respectively.

Fig. 2
Fig. 2

Color selection properties of elemental micro-resonators with different values of 0 nm, 56 nm, 104 nm, 130 nm, 149 nm, and 173 nm for the the RC thickness (d). The insets show the microscopic images of four elemental micro-resonators of d = 104 nm, 130 nm, 149 nm, and 179 nm from the left to the right.

Fig. 3
Fig. 3

Monolithic integration of three primary color (R, G, and B) elements into a combinatorial color array. An identical stamp was used for transfer-printing different color patterns in sequence. The black upward- and downward-arrows represent the transfer-printing process.

Fig. 4
Fig. 4

Schematic illustration of combinatorial color arrays in (a) a pattern-by-pattern configuration and (c) a pattern-on-pattern configuration. (b) and (d) show the microscopic images of the fabricated color arrays corresponding to (a) and (c). Here, Wr, Wb, and D denote the width of the rectangular color element, the separation between adjacent color elements, and the diameter of the circular color element, respectively.

Fig. 5
Fig. 5

Schematic diagram of the LC cell incorporated with a lateral color array as the CF in the vertical configuration (a) under no applied voltage and (b) under the applied voltage above a threshold. Microphotographs showing (c) the dark state of the LC cell under no applied voltage and (d) the bright state of the LC cell under the applied voltage of 5 V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T FP = T 2 ( 1 R ) 2 + 4 R sin 2 ( Δ 2 ) ,
Δ = 4 π λ n d cos θ + δ r .

Metrics