Abstract

Graphene is considered a promising material for broadband opto-electronics because of its linear and gapless band structure. Its optical conductivity can be significantly tuned electrostatically by shifting the Fermi level. Using mentioned property, we experimentally demonstrate a graphene based electro-absorption modulator with very low insertion loss. The device is realized on a silicon on insulator (SOI) waveguide operating at 1550 nm wavelength. The modulator shows a modulation depth of 16 dB and an insertion loss of 3.3 dB, surpassing GeSi and previous graphene based absorption modulators and being comparable to silicon Mach-Zehnder interferometer based modulators.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed double layer graphene electro-absorption modulator on SOI waveguide

Marco A. Giambra, Vito Sorianello, Vaidotas Miseikis, Simone Marconi, Alberto Montanaro, Paola Galli, Sergio Pezzini, Camilla Coletti, and Marco Romagnoli
Opt. Express 27(15) 20145-20155 (2019)

Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide

Meiyong Fan, Huimin Yang, Pengfei Zheng, Guohua Hu, Binfeng Yun, and Yiping Cui
Opt. Express 25(18) 21619-21629 (2017)

High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide

Dazeng Feng, Shirong Liao, Hong Liang, Joan Fong, Bhavin Bijlani, Roshanak Shafiiha, B. Jonathan Luff, Ying Luo, Jack Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 20(20) 22224-22232 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
    [Crossref]
  3. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
    [Crossref]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  6. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
    [Crossref] [PubMed]
  7. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
    [Crossref] [PubMed]
  8. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  10. J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci Rep 3, 1897 (2013).
    [Crossref] [PubMed]
  11. M. Liu, X. Yin, and X. Zhang, “Double-Layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref] [PubMed]
  12. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  13. S. J. Koester and M. Li, “Waveguide-Coupled Graphene Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 6000211 (2014).
    [Crossref]
  14. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref] [PubMed]
  15. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E. J. Lim, P. G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [Crossref] [PubMed]
  16. A. Castellanos-Gomez, M. Wojtaszek, R. H. M. Smit, N. Tombros, N. Agraït, B. J. van Wees, and G. Rubio-Bollinger, “Electronic inhomogeneities in graphene: the role of the substrate interaction and chemical doping,” arXiv:1210.4147 (2012).
  17. H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
    [Crossref] [PubMed]
  18. Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
    [Crossref]
  19. H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
    [Crossref] [PubMed]

2014 (2)

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

S. J. Koester and M. Li, “Waveguide-Coupled Graphene Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 6000211 (2014).
[Crossref]

2013 (3)

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci Rep 3, 1897 (2013).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E. J. Lim, P. G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

2012 (3)

H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, and X. Zhang, “Double-Layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

2011 (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2010 (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

2009 (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

2008 (2)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

2005 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Baehr-Jones, T.

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Carbone, F.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Chaisakul, P.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Chee, E. K. S.

Chen, Y.

H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
[Crossref] [PubMed]

Cho, C.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

Chrastina, D.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Chu, T.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Cong, C.

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

Coudevylle, J. R.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Ding, R.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Edmond, S.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Frigerio, J.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Gosciniak, J.

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci Rep 3, 1897 (2013).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Hochberg, M.

Hwang, H. J.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

Isella, G.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kang, C. G.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kim, P.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kim, Y.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

Koester, S. J.

S. J. Koester and M. Li, “Waveguide-Coupled Graphene Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 6000211 (2014).
[Crossref]

Kuzmenko, A. B.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Le Roux, X.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Lee, B. H.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

Lee, Y. G.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

Li, M.

S. J. Koester and M. Li, “Waveguide-Coupled Graphene Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 6000211 (2014).
[Crossref]

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Li, Z.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Lim, A. E. J.

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-Layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, Y.

Lo, P. G. Q.

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Ma, Y.

Marris-Morini, D.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Novack, A.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Rouifed, M. S.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Shang, J.

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Stormer, H. L.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Streshinsky, M.

Tan, D. T. H.

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci Rep 3, 1897 (2013).
[Crossref] [PubMed]

Tan, Y. W.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Tu, X.

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

van der Marel, D.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

van Heumen, E.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Vivien, L.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

Wu, Y.

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

Xiao, X.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Xu, H.

H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yang, Y.

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-Layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, J.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Yu, T.

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

Yu, Y.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhang, H.

H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
[Crossref] [PubMed]

Zhang, J.

H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
[Crossref] [PubMed]

Zhang, X.

M. Liu, X. Yin, and X. Zhang, “Double-Layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

ACS Nano (2)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano 4(12), 7221–7228 (2010).
[Crossref] [PubMed]

Carbon (1)

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO 2 using the short pulse I-V method,” Carbon 60, 453–460 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Koester and M. Li, “Waveguide-Coupled Graphene Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 6000211 (2014).
[Crossref]

Nano Lett. (1)

M. Liu, X. Yin, and X. Zhang, “Double-Layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Nature (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Sci Rep (1)

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci Rep 3, 1897 (2013).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15(1), 014601 (2014).
[Crossref]

Science (3)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Small (1)

H. Xu, Y. Chen, J. Zhang, and H. Zhang, “Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy,” Small 8(18), 2833–2840 (2012).
[Crossref] [PubMed]

Other (2)

A. Castellanos-Gomez, M. Wojtaszek, R. H. M. Smit, N. Tombros, N. Agraït, B. J. van Wees, and G. Rubio-Bollinger, “Electronic inhomogeneities in graphene: the role of the substrate interaction and chemical doping,” arXiv:1210.4147 (2012).

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (Anaheim, Calif., 2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Top view of device, light was coupled using grating couplers (left). Isometric view of device showing graphene layer on top of Si waveguide (top right). Cross-sectional view of device with graphene layers separated by 94 nm aluminum oxide (bottom right).
Fig. 2
Fig. 2 Static measurement of the optical transmission as a function of applied voltage for both sweep directions. The location of Fermi energy of the lower graphene layer is indicated for one sweep directions to illustrate the operation principle.
Fig. 3
Fig. 3 Relative electro-optical response of the modulator as a function of frequency. f-3dB is 670 MHz. The inset shows the output signal of the modulator at 50 MHz (yellow line) for an AC input voltage VPP = 6 V (purple and cyan lines represent the reference signals).

Metrics