Abstract

All-silicon plano-concave microlens arrays with spherical profiles and good image performance were obtained using femtosecond laser direct irradiation and mixed acid etching. A femtosecond laser was employed to produce microhole arrays on silicon, and the microholes were expanded and smoothed by the mixed acid to form concave microlenses. The effects of the etching time, laser power, and pulse number on the microlens morphology were investigated. This method has potential applications in the fabrication of all-silicon plano-concave microlenses for use in infrared devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques

Jorge Albero, Lukasz Nieradko, Christophe Gorecki, Heidi Ottevaere, Virginia Gomez, Hugo Thienpont, Juha Pietarinen, Birgit Päivänranta, and Nicolas Passilly
Opt. Express 17(8) 6283-6292 (2009)

Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching

An Pan, Jinhai Si, Tao Chen, Yuncan Ma, Feng Chen, and Xun Hou
Opt. Express 21(14) 16657-16662 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Fife, A. El Gamal, and H.-S. P. Wong, “A 3D multi-aperture image sensor architecture,” in Proceedings of Custom Integrated Circuits Conference (Institute of Electrical and Electronics Engineers, San Jose, Calif., 2006), pp. 281–284.
  2. D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
    [Crossref]
  3. F. de la Barrière, G. Druart, N. Guérineau, G. Lasfargues, M. Fendler, N. Lhermet, and J. Taboury, “Compact infrared cryogenic wafer-level camera: design and experimental validation,” Appl. Opt. 51(8), 1049–1060 (2012).
    [Crossref] [PubMed]
  4. T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
    [Crossref]
  5. H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20(9), 958–960 (1995).
    [Crossref] [PubMed]
  6. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  7. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
    [Crossref] [PubMed]
  8. T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
    [Crossref]
  9. K. Shiraishi, M. Kagaya, K. Muro, H. Yoda, Y. Kogami, and C. S. Tsai, “Single-mode fiber with a plano-convex silicon microlens for an integrated butt-coupling scheme,” Appl. Opt. 47(34), 6345–6349 (2008).
    [Crossref] [PubMed]
  10. N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
    [Crossref]
  11. G. Molar-Velázquez, F. J. Renero-Carrillo, and W. Calleja-Arriaga, “Two-dimensional optical micro-scanner on silicon technology,” Optik 121(9), 843–846 (2010).
    [Crossref]
  12. R. Bitterli, T. Scharf, H. P. Herzig, W. Noell, N. de Rooij, A. Bich, S. Roth, K. J. Weible, R. Voelkel, M. Zimmermann, and M. Schmidt, “Fabrication and characterization of linear diffusers based on concave micro lens arrays,” Opt. Express 18(13), 14251–14261 (2010).
    [Crossref] [PubMed]
  13. P. Liebetraut, S. Petsch, and H. Zappe, “A versatile fabrication process for reaction injection molded elastomeric micro-lenses” in International Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, Banff, Canada, 2012), pp. 176–177.
    [Crossref]
  14. E. Massera, I. Rea, I. Nasti, P. Maddalena, and G. Di Francia, “Silicon infrared diffuser for wireless communication,” Appl. Opt. 45(26), 6746–6749 (2006).
    [Crossref] [PubMed]
  15. Y. S. Ow, M. B. H. Breese, and S. Azimi, “Fabrication of concave silicon micro-mirrors,” Opt. Express 18(14), 14511–14518 (2010).
    [Crossref] [PubMed]
  16. Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
    [Crossref]
  17. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
    [Crossref]
  18. U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
    [Crossref]
  19. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  20. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
    [Crossref]
  21. M. Eisner and J. Schwider, “Transferring resist microlenses into silicon by reactive ion etching,” Opt. Eng. 35(10), 2979–2982 (1996).
    [Crossref]
  22. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
    [Crossref]
  23. S. Sugiyama, S. Khumpuang, and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” J. Micromech. Microeng. 14(10), 1399–1404 (2004).
    [Crossref]
  24. C. F. Chen, S. D. Tzeng, H. Y. Chen, and S. Gwo, “Silicon microlens structures fabricated by scanning-probe gray-scale oxidation,” Opt. Lett. 30(6), 652–654 (2005).
    [Crossref] [PubMed]
  25. C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
    [Crossref]
  26. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  27. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
    [Crossref]
  28. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
    [Crossref]
  29. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
    [Crossref]
  30. C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
    [Crossref]
  31. M. Baranski, J. Albero, R. Kasztelanic, and C. Gorecki, “A numerical model of wet isotropic etching of silicon molds for microlenses fabrication,” J. Electrochem. Soc. 158(11), D681–D688 (2011).
    [Crossref]
  32. H. Robbins and B. Schwartz, “Chemical etching of silicon II,” J. Electrochem. Soc. 107(2), 108–111 (1960).
    [Crossref]

2013 (2)

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
[Crossref]

2012 (1)

2011 (3)

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
[Crossref] [PubMed]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

M. Baranski, J. Albero, R. Kasztelanic, and C. Gorecki, “A numerical model of wet isotropic etching of silicon molds for microlenses fabrication,” J. Electrochem. Soc. 158(11), D681–D688 (2011).
[Crossref]

2010 (5)

2009 (2)

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (4)

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
[Crossref]

E. Massera, I. Rea, I. Nasti, P. Maddalena, and G. Di Francia, “Silicon infrared diffuser for wireless communication,” Appl. Opt. 45(26), 6746–6749 (2006).
[Crossref] [PubMed]

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

2005 (3)

C. F. Chen, S. D. Tzeng, H. Y. Chen, and S. Gwo, “Silicon microlens structures fabricated by scanning-probe gray-scale oxidation,” Opt. Lett. 30(6), 652–654 (2005).
[Crossref] [PubMed]

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

2004 (2)

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

S. Sugiyama, S. Khumpuang, and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” J. Micromech. Microeng. 14(10), 1399–1404 (2004).
[Crossref]

2000 (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

1996 (2)

M. Eisner and J. Schwider, “Transferring resist microlenses into silicon by reactive ion etching,” Opt. Eng. 35(10), 2979–2982 (1996).
[Crossref]

U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
[Crossref]

1995 (1)

1991 (1)

T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
[Crossref]

1960 (1)

H. Robbins and B. Schwartz, “Chemical etching of silicon II,” J. Electrochem. Soc. 107(2), 108–111 (1960).
[Crossref]

Albero, J.

Alonso-delPino, M.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Aoyama, K.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Azimi, S.

Baranski, M.

M. Baranski, J. Albero, R. Kasztelanic, and C. Gorecki, “A numerical model of wet isotropic etching of silicon molds for microlenses fabrication,” J. Electrochem. Soc. 158(11), D681–D688 (2011).
[Crossref]

Bian, H.

Bich, A.

Bier, W.

U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
[Crossref]

Bitterli, R.

Bourouina, T.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
[Crossref]

Breese, M. B. H.

Calleja-Arriaga, W.

G. Molar-Velázquez, F. J. Renero-Carrillo, and W. Calleja-Arriaga, “Two-dimensional optical micro-scanner on silicon technology,” Optik 121(9), 843–846 (2010).
[Crossref]

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chattopadhyay, G.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Chen, C. F.

T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
[Crossref]

C. F. Chen, S. D. Tzeng, H. Y. Chen, and S. Gwo, “Silicon microlens structures fabricated by scanning-probe gray-scale oxidation,” Opt. Lett. 30(6), 652–654 (2005).
[Crossref] [PubMed]

Chen, F.

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Chen, H. Y.

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chen, T.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

Chuang, F. T.

T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
[Crossref]

Cox, J. A.

T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

de la Barrière, F.

de Rooij, N.

Di Francia, G.

Druart, G.

Eisner, M.

M. Eisner and J. Schwider, “Transferring resist microlenses into silicon by reactive ion etching,” Opt. Eng. 35(10), 2979–2982 (1996).
[Crossref]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Fendler, M.

Gomez, V.

Gorecki, C.

Guber, A. E.

U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
[Crossref]

Guérineau, N.

Gwo, S.

Hansen, O.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

Heckele, M.

U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
[Crossref]

Herzig, H. P.

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Hirao, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

Hisakuni, H.

Ho, J. R.

T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
[Crossref]

Holz, M.

T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
[Crossref]

Hong, M. H.

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Hou, C.

Hou, X.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Jofre, L.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Jung-Kubiak, C.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Kagaya, M.

Kanehira, S.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

Kasztelanic, R.

M. Baranski, J. Albero, R. Kasztelanic, and C. Gorecki, “A numerical model of wet isotropic etching of silicon molds for microlenses fabrication,” J. Electrochem. Soc. 158(11), D681–D688 (2011).
[Crossref]

Kawaguchi, G.

S. Sugiyama, S. Khumpuang, and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” J. Micromech. Microeng. 14(10), 1399–1404 (2004).
[Crossref]

Khalil, D.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
[Crossref]

Khumpuang, S.

S. Sugiyama, S. Khumpuang, and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” J. Micromech. Microeng. 14(10), 1399–1404 (2004).
[Crossref]

Kogami, Y.

Köhler, U.

U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
[Crossref]

Kotani, K.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Kraft, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Kumar, A. S.

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Larsen, K. P.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

Lasfargues, G.

Lee, C.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Lhermet, N.

Li, C.

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

Liang, W.

Liebetraut, P.

Lim, C. S.

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Liu, H.

Liu, X. D.

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Llombart, N.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Maddalena, P.

Mader, D.

Maeno, Y.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Massera, E.

Masuko, K.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Mehdi, I.

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Merz, R.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Miura, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Molar-Velázquez, G.

G. Molar-Velázquez, F. J. Renero-Carrillo, and W. Calleja-Arriaga, “Two-dimensional optical micro-scanner on silicon technology,” Optik 121(9), 843–846 (2010).
[Crossref]

Muro, K.

Nakaya, S.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Nasti, I.

Nieradko, L.

Noell, W.

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Ottevaere, H.

Ow, Y. S.

Päivänranta, B.

Passilly, N.

Pietarinen, J.

Rahman, M.

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Ravnkilde, J. T.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

Rea, I.

Ren, H.

Renero-Carrillo, F. J.

G. Molar-Velázquez, F. J. Renero-Carrillo, and W. Calleja-Arriaga, “Two-dimensional optical micro-scanner on silicon technology,” Optik 121(9), 843–846 (2010).
[Crossref]

Robbins, H.

H. Robbins and B. Schwartz, “Chemical etching of silicon II,” J. Electrochem. Soc. 107(2), 108–111 (1960).
[Crossref]

Roth, S.

Saadany, B.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
[Crossref]

Sabry, Y. M.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
[Crossref]

Sasaki, H.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Scharf, T.

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Schmidt, M.

Schwartz, B.

H. Robbins and B. Schwartz, “Chemical etching of silicon II,” J. Electrochem. Soc. 107(2), 108–111 (1960).
[Crossref]

Schwider, J.

M. Eisner and J. Schwider, “Transferring resist microlenses into silicon by reactive ion etching,” Opt. Eng. 35(10), 2979–2982 (1996).
[Crossref]

Seifert, A.

Sekikawa, R.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Shi, X.

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

Shih, T. K.

T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
[Crossref]

Shimura, D.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Shiraishi, K.

Si, J.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Sugiyama, S.

S. Sugiyama, S. Khumpuang, and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” J. Micromech. Microeng. 14(10), 1399–1404 (2004).
[Crossref]

Swanson, S.

T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
[Crossref]

Taboury, J.

Takamori, T.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Tanaka, K.

Thienpont, H.

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Tsai, C. S.

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Tzeng, S. D.

Uekawa, M.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

Varahramyan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Voelkel, R.

Waibel, P.

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Wang, X.

Weible, K. J.

Werner, T. R.

T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
[Crossref]

Wu, S. T.

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Yang, Q.

Yoda, H.

Zappe, H.

Zhang, Y.

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

Zimmermann, M.

Appl. Opt. (3)

Appl. Phys. B (1)

C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, and X. Hou, “Photoinduced multiple microchannels inside silicon produced by a femtosecond laser,” Appl. Phys. B 98(2–3), 377–381 (2010).
[Crossref]

Appl. Phys. Lett. (1)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

N. Llombart, C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi, “Silicon micromachined lens antenna for THz integrated heterodyne arrays,” IEEE Trans. Terahertz Sci. Technol. 3(5), 515–523 (2013).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

C. S. Lim, M. H. Hong, A. S. Kumar, M. Rahman, and X. D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

J. Appl. Phys. (1)

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

J. Electrochem. Soc. (2)

M. Baranski, J. Albero, R. Kasztelanic, and C. Gorecki, “A numerical model of wet isotropic etching of silicon molds for microlenses fabrication,” J. Electrochem. Soc. 158(11), D681–D688 (2011).
[Crossref]

H. Robbins and B. Schwartz, “Chemical etching of silicon II,” J. Electrochem. Soc. 107(2), 108–111 (1960).
[Crossref]

J. Micromech. Microeng. (3)

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

S. Sugiyama, S. Khumpuang, and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” J. Micromech. Microeng. 14(10), 1399–1404 (2004).
[Crossref]

Light Sci. Appl. (1)

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light,” Light Sci. Appl. 2(8), e94 (2013).
[Crossref]

Microelectron. Eng. (1)

T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83(11–12), 2499–2503 (2006).
[Crossref]

Opt. Eng. (2)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

M. Eisner and J. Schwider, “Transferring resist microlenses into silicon by reactive ion etching,” Opt. Eng. 35(10), 2979–2982 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optik (1)

G. Molar-Velázquez, F. J. Renero-Carrillo, and W. Calleja-Arriaga, “Two-dimensional optical micro-scanner on silicon technology,” Optik 121(9), 843–846 (2010).
[Crossref]

Proc. SPIE (1)

T. R. Werner, J. A. Cox, S. Swanson, and M. Holz, “Microlens array for staring infrared imager,” Proc. SPIE 1544, 46–57 (1991).
[Crossref]

Sens. Actuators A Phys. (1)

U. Köhler, A. E. Guber, W. Bier, and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sens. Actuators A Phys. 53(1–3), 361–363 (1996).
[Crossref]

Other (2)

P. Liebetraut, S. Petsch, and H. Zappe, “A versatile fabrication process for reaction injection molded elastomeric micro-lenses” in International Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, Banff, Canada, 2012), pp. 176–177.
[Crossref]

K. Fife, A. El Gamal, and H.-S. P. Wong, “A 3D multi-aperture image sensor architecture,” in Proceedings of Custom Integrated Circuits Conference (Institute of Electrical and Electronics Engineers, San Jose, Calif., 2006), pp. 281–284.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of microlens fabrication.
Fig. 2
Fig. 2 SEM images of microlenses with laser power of 7 mW and pulse number of 50 at etching times of (a) 1 min, (b) 5 min, and (c) 10 min. (d) Heights and (e) radii of curvature at successive times during etching.
Fig. 3
Fig. 3 Morphological observation of MLA with a fill factor of 78.0%. (a) SEM image of uniform MLA. (b) 3D-confocal analysis of marked region in (a). (c) Cross-sectional profile analysis of marked position in (b); y axis (etch depth) was stretched relative to x axis to show the profile more clearly.
Fig. 4
Fig. 4 Dependences of D, H, and R values of microlenses on (a), (b), and (c) femtosecond laser power and (d), (e), and (f) number of pulses. Etching time was 40 min. D, H, and R were measured by confocal microscopy.
Fig. 5
Fig. 5 Process of imaging MLA with a fill factor of 96.6%. (a) Imaging device. (b) Image array made by the MLA.

Metrics