Abstract

Metamaterials that have broadband absorption at MIR frequencies, and yet, are transmitive at visible frequencies are fabricated using a semi-conducting Indium Tin Oxide (ITO) film as ground plane. The metamaterial absorber consists of an array of uniform aluminum disks separated by a Zinc Sulphide (ZnS) dielectric spacer layer from the ITO ground plane. The metamaterial was fabricated by a simple, cost-effective vapor deposition through a shadow mask. Compared with the usual metal/dielectric/metal tri-layer absorbers, the metal/dielectric/ITO absorber shows a peak absorbance of 98% and >70% over the mid-infrared regime from 4 to 7 μm. The broadband nature arises due to smaller dispersion in the dielectric permittivity of ITO compared to that of plasmonic metals at mid-infrared frequencies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [PubMed]
  2. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
    [CrossRef]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  4. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
    [CrossRef] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef] [PubMed]
  6. T. Maier and H. Brueckl, “Multispectral microbolometers for the mid infra-red,” Opt. Lett. 35, 3766–3768 (2010).
    [CrossRef] [PubMed]
  7. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef] [PubMed]
  8. J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [CrossRef] [PubMed]
  9. G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 372–374 (2013).
    [CrossRef]
  10. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
    [CrossRef] [PubMed]
  11. C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley, 2005).
  12. J. Hao, L. Zhao, and M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011).
    [CrossRef]
  13. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
    [CrossRef] [PubMed]
  14. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013).
    [CrossRef]
  15. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
    [CrossRef]
  16. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
    [CrossRef] [PubMed]
  17. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2011).
    [CrossRef]
  18. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [CrossRef]
  19. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phy. 60, R123–R159 (1986).
    [CrossRef]
  20. COMSOL Multiphysics RF Module 3.5a User’s Guide.
  21. G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers” (Unpublished, 2014).
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  23. H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–151 (1984).
    [CrossRef]
  24. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
    [CrossRef]

2014 (1)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

2013 (3)

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 372–374 (2013).
[CrossRef]

2012 (4)

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[CrossRef] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[CrossRef]

2011 (3)

J. Hao, L. Zhao, and M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011).
[CrossRef]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2011).
[CrossRef]

2010 (4)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

T. Maier and H. Brueckl, “Multispectral microbolometers for the mid infra-red,” Opt. Lett. 35, 3766–3768 (2010).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

1986 (1)

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phy. 60, R123–R159 (1986).
[CrossRef]

1984 (1)

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–151 (1984).
[CrossRef]

1983 (1)

Alexander, R. W.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley, 2005).

Bell, R. J.

Bell, R. R.

Bell, S. E.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

Brueckl, H.

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Chilkoti, A.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Ciraci, C.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 372–374 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[CrossRef] [PubMed]

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers” (Unpublished, 2014).

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Feng, Q.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Granqvist, C. G.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phy. 60, R123–R159 (1986).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
[CrossRef]

Guo, J.

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013).
[CrossRef]

Hamberg, I.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phy. 60, R123–R159 (1986).
[CrossRef]

Hao, J.

J. Hao, L. Zhao, and M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011).
[CrossRef]

Hendrickson, J.

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Hill, R. T.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Hu, C.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–151 (1984).
[CrossRef]

Lier, E.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

Long, L. L.

Luo, X.

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[CrossRef]

Maier, T.

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Mock, J. J.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Moreau, A.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Mulet, J.-P.

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Ordal, M. A.

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Pu, M.

Qui, M.

J. Hao, L. Zhao, and M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011).
[CrossRef]

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 372–374 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[CrossRef] [PubMed]

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers” (Unpublished, 2014).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Scarborough, C. P.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Smith, D. R.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

Wang, Q.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Ward, C. A.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Werner, D. H.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Wiley, B. J.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Wu, Q.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013).
[CrossRef]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[CrossRef]

Zhao, L.

J. Hao, L. Zhao, and M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011).
[CrossRef]

ACS Nano (1)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[CrossRef] [PubMed]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Appl. Opt. (1)

J. Appl. Phy. (1)

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phy. 60, R123–R159 (1986).
[CrossRef]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–151 (1984).
[CrossRef]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[CrossRef]

Nat. Mater. (1)

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011).
[CrossRef] [PubMed]

Nature (2)

J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phy. Rev. B (1)

J. Hao, L. Zhao, and M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Other (4)

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
[CrossRef]

C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley, 2005).

COMSOL Multiphysics RF Module 3.5a User’s Guide.

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers” (Unpublished, 2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left panel: Drude dispersion of the real and imaginary parts of the dielectric permittivity of Au (ωp/2π = 2176 THz, εb = 5.7 and γ/2π = 6.5 THz), Al (ωp/2π = 3464 THz, εb = 5.1 and γ/2π = 19.41 THz) and ITO (ωp/2π = 461 THz, εb = 3.9, γ/2π = 28.7 THz). The right panel shows dispersion for ITO in an expanded view..

Fig. 2
Fig. 2

Left panel: Schematic of unit cell of an absorbing metamaterial. The structure absorb the IR radiation and diffract through the visible radiation. Middle: The atomic force microscope scan shows a disk height of about 100 nm. Right: SEM image of the fabricated structure with h = 200 nm, d = 380 nm, t = 100 nm, disk diameter = 3 μm and periodicity in X–Z directions are 8μm. The bar indicator is 8 μm long. Inset: Diffraction of a He-Ne (632.8 nm) laser transmitted through the structure with a zeroth order transmittance of 45%.

Fig. 3
Fig. 3

Left panel: Simulated absorption versus the wavelength for the metamaterials absorber structures designed. Right panel: Measured absorption from the fabricated metamaterials absorber structures and the reflectance of plane ITO film.

Fig. 4
Fig. 4

Left: Electric field magnitude, Right: Magnetic field magnitude in tri-layer of Al/ZnS/ITO metamaterial at 4.6 μm wavelengths. The nature of the m = 3 mode is apparent.

Metrics