Abstract

A one-dimensional asymmetric photonic crystal with dual-frequency liquid crystal as a central defect layer was demonstrated. Such asymmetric structure was characterized by the dramatic increase in intensity of the electric field of light localized at the overlapped photonic bandgap edges, thereby enhancing the observed transmittance of the spectral windows originating from the defect layer. The defect layer was made of a dual-mode liquid crystal that exhibited not only electrical tunability and switchability but also optical bistability. Consequently, tunable and bistable defect modes can be realized in the photonic structure. This asymmetric photonic crystal structure is promising and should be further explored for photonic device applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer

Chong-Yin Wu, Yi-Hong Zou, Ivan Timofeev, Yu-Ting Lin, Victor Ya. Zyryanov, Jy-Shan Hsu, and Wei Lee
Opt. Express 19(8) 7349-7355 (2011)

Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal

Kuan-Chung Huang, Yu-Cheng Hsiao, Ivan V. Timofeev, Victor Ya. Zyryanov, and Wei Lee
Opt. Express 24(22) 25019-25025 (2016)

Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect

Yu-Cheng Hsiao, Yi-Hong Zou, Ivan V. Timofeev, Victor Ya. Zyryanov, and Wei Lee
Opt. Mater. Express 3(6) 821-828 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  4. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  5. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
    [Crossref]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [Crossref] [PubMed]
  7. Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
    [Crossref]
  8. G. E. Nevskaya, S. P. Palto, and M. G. Tomilin, “Liquid-crystal-based microlasers,” J. Opt. Technol. 77(8), 473–486 (2010).
    [Crossref]
  9. Y.-T. Lin, W.-Y. Chang, C.-Y. Wu, V. Y. Zyryanov, and W. Lee, “Optical properties of one-dimensional photonic crystal with a twisted-nematic defect layer,” Opt. Express 18(26), 26959–26964 (2010).
    [Crossref] [PubMed]
  10. A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).
  11. D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
    [Crossref] [PubMed]
  12. G. Calo and L. Mescia, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
    [Crossref]
  13. A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).
  14. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
    [Crossref]
  15. J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
    [Crossref]
  16. I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
    [Crossref]
  17. C.-Y. Wu, Y.-H. Zou, I. V. Timofeev, Y.-T. Lin, V. Y. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express 19(8), 7349–7355 (2011).
    [Crossref] [PubMed]
  18. T. J. Scheffer and J. Nehring, “Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
    [Crossref]
  19. F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
    [Crossref]
  20. P. Bos and K. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
    [Crossref]
  21. S.-H. Chen and C.-L. Yang, “Dynamics of twisted nematic liquid crystal pi-cells,” Appl. Phys. Lett. 80(20), 3721–3723 (2002).
    [Crossref]
  22. I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
    [Crossref] [PubMed]
  23. H.-T. Wang, J.-D. Lin, C.-R. Lee, and W. Lee, “Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer,” Opt. Lett. 39(12), 3516–3519 (2014).
    [Crossref]

2014 (1)

2012 (2)

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).

2011 (2)

2010 (3)

2009 (2)

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

2008 (1)

G. Calo and L. Mescia, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

2007 (2)

2006 (2)

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

2003 (1)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
[Crossref]

2002 (1)

S.-H. Chen and C.-L. Yang, “Dynamics of twisted nematic liquid crystal pi-cells,” Appl. Phys. Lett. 80(20), 3721–3723 (2002).
[Crossref]

2001 (1)

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

1984 (1)

P. Bos and K. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[Crossref]

1977 (1)

T. J. Scheffer and J. Nehring, “Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[Crossref]

Arkhipkin, V. G.

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

Baldycheva, A.

A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).

Bawendi, M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Beccherelli, R.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Bellini, B.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Bermel, P.

Berwick, K.

A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).

Bos, P.

P. Bos and K. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[Crossref]

Calo, G.

G. Calo and L. Mescia, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Caruge, J. M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Chang, W.-Y.

Chen, C.-J.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

Chen, C.-Y.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Chen, S.-H.

S.-H. Chen and C.-L. Yang, “Dynamics of twisted nematic liquid crystal pi-cells,” Appl. Phys. Lett. 80(20), 3721–3723 (2002).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Gunyakov, V. A.

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

Ha, Y.-K.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Hsieh, C.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Hsu, J.-S.

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Kee, C.-S.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Kim, J.-E.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Kimerling, L. C.

Koehler-Beran, K.

P. Bos and K. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[Crossref]

Kooi, S.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Kriezis, E. E.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Lee, C.-R.

Lee, J.-C.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lee, W.

H.-T. Wang, J.-D. Lin, C.-R. Lee, and W. Lee, “Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer,” Opt. Lett. 39(12), 3516–3519 (2014).
[Crossref]

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

C.-Y. Wu, Y.-H. Zou, I. V. Timofeev, Y.-T. Lin, V. Y. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express 19(8), 7349–7355 (2011).
[Crossref] [PubMed]

F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
[Crossref]

Y.-T. Lin, W.-Y. Chang, C.-Y. Wu, V. Y. Zyryanov, and W. Lee, “Optical properties of one-dimensional photonic crystal with a twisted-nematic defect layer,” Opt. Express 18(26), 26959–26964 (2010).
[Crossref] [PubMed]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Li, J.-H.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

Liao, S.-F.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

Lim, H.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Lin, F.-C.

F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
[Crossref]

Lin, J.-D.

Lin, Y.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Lin, Y.-T.

Luo, C.

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
[Crossref]

Mescia, L.

G. Calo and L. Mescia, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Myslivets, S. A.

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

Nehring, J.

T. J. Scheffer and J. Nehring, “Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[Crossref]

Nevskaya, G. E.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
[Crossref]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Palto, S. P.

Pan, C.-L.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Pang, J.-P.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

Park, H.-Y.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Pen, R. P.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Perova, T. S.

A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).

Prasad, P. N.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Scheffer, T. J.

T. J. Scheffer and J. Nehring, “Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Tasolamprou, A. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

Thomas, E. L.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Timofeev, I. V.

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

C.-Y. Wu, Y.-H. Zou, I. V. Timofeev, Y.-T. Lin, V. Y. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express 19(8), 7349–7355 (2011).
[Crossref] [PubMed]

Tolmachev, V. A.

A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).

Tomilin, M. G.

Vetrov, S. Y.

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

Wang, H.-T.

Wu, C.-Y.

Wu, J.-J.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yang, C.-L.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

S.-H. Chen and C.-L. Yang, “Dynamics of twisted nematic liquid crystal pi-cells,” Appl. Phys. Lett. 80(20), 3721–3723 (2002).
[Crossref]

Yang, Y.-C.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Yao, I.-A.

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Yoon, J.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
[Crossref]

Zeng, L.

Zografopoulos, D. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Zou, Y.-H.

Zyryanov, V. Y.

Appl. Phys. Express (1)

F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
[Crossref]

Appl. Phys. Lett. (6)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593–3595 (2003).
[Crossref]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

I.-A. Yao, C.-L. Yang, C.-J. Chen, J.-P. Pang, S.-F. Liao, J.-H. Li, and J.-J. Wu, “Bistability of splay and π twist states in a chiral-doped dual frequency liquid crystal cell,” Appl. Phys. Lett. 94(7), 071104 (2009).
[Crossref]

S.-H. Chen and C.-L. Yang, “Dynamics of twisted nematic liquid crystal pi-cells,” Appl. Phys. Lett. 80(20), 3721–3723 (2002).
[Crossref]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R. P. Pen, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H.-Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

IEEE Trans. NanoTechnol. (1)

G. Calo and L. Mescia, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

J. Appl. Phys. (1)

T. J. Scheffer and J. Nehring, “Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[Crossref]

J. Eur. Opt. Soc. Rapid (1)

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-oninsulator photonic crystal slab structure,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

J. Opt. Technol. (1)

Mol. Cryst. Liq. Cryst. (1)

P. Bos and K. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[Crossref]

Nanoscale Res. Lett. (1)

A. Baldycheva, V. A. Tolmachev, K. Berwick, and T. S. Perova, “Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances,” Nanoscale Res. Lett. 7(7), 387 (2012).

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. V. Timofeev, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Y. Vetrov, W. Lee, and V. Y. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 011705 (2012).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of a 1-D asymmetric PC containing DF-BCSN as the central defect layer. The single layer thicknesses of the high- and low-refractive-index dielectric coatings in the first (second) multilayered substrate are dH1 (dH2) and dL1 (dL2), respectively.
Fig. 2
Fig. 2 Simulated transmittance spectra of a 1-D asymmetric multilayer PC comprising nematic LC as the central defect layer with N = 3, 4, 5, 6, and 7 (black solid lines). The blue and red dotted curves are the spectra of the first and second PC substrates showing their central reflection at wavelengths of 450 nm and 600 nm, respectively. Optical extinction is ignored.
Fig. 3
Fig. 3 Switching mechanisms and configurations of a DF-BCSN cell in various states.
Fig. 4
Fig. 4 Simulated (dash-dotted lines) and laboratory (solid lines) spectra of the asymmetric PC/DF-BCSN cell (N = 4) in two stable states without any polarizers. Note that the multilayer thicknesses have been acceptably tuned to match the experimental results: dSiO2_PC1 = 76.0 nm, dSiO2_PC2 = 105.8 nm, dTa2O5_PC1 = 51.5 nm and dTa2O5_PC2 = 71.5 nm in accordance with the mirror spectra. The simulations were sophisticatedly performed with the director profile within the LC defect layer divided into 100 sublayers, taking the optical extinction and dispersion into account.
Fig. 5
Fig. 5 Spatial distributions of the refractive index no (green curve) and local field intensity |E|2 inside the PC/DF-BCSN cell in the splay state (red curve) as well as the π-twist state (blue curve) for O-mode at λ = 535.8 nm. Parameters are the same as used in Fig. 4.
Fig. 6
Fig. 6 Experimental transmittance spectra of the tunable defect modes from the splay state to the bend state induced by an applied voltage at a low frequency of 1 kHz.

Metrics