Abstract

We explore optical bistability and degenerate four-wave mixing of a hybrid optical system composed of a photonic crystal nanocavity, a single nitrogen-vacancy center embedded in the cavity, and a nearby photonic waveguide serving for in- and outcoupling of light into the cavity in the weak-coupling regime. Here the hybrid system is coherently driven by a continuous-wave bichromatic laser field consisting of a strong control field and a weak probe field. We take account of the nonlinear nature of the nitrogen-vacancy center in the Heisenberg-Langevin equations and give an effective perturbation method to deal with such problems in the continuous-wave-operation regime. The results clearly show that the bistability region of the population inversion and the intensity of the generated four-wave mixing field can be well controlled by properly adjusting the system practical parameters. The nanophotonic platform can be used to implement our proposal. This investigation may be useful for gaining further insight into the properties of solid-state cavity quantum electrodynamics system and find applications in all-optical wavelength converter and switch in a photonic crystal platform.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
    [CrossRef] [PubMed]
  2. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
    [CrossRef]
  3. K. J. Vahala, Optical Microcavities (World Scientific Publishing, 2004).
  4. J. Vuckovic, “Quantum optics and cavity QED with quantum dots in photonic crystals,” arXiv: 1402.2541.
  5. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
    [CrossRef]
  6. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
    [CrossRef]
  8. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
    [CrossRef] [PubMed]
  9. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
    [CrossRef]
  10. J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
    [CrossRef]
  11. Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
    [CrossRef] [PubMed]
  12. J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
    [CrossRef]
  13. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
    [CrossRef]
  14. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
    [CrossRef]
  15. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
    [CrossRef] [PubMed]
  16. J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
    [CrossRef]
  17. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
    [CrossRef]
  18. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
    [CrossRef] [PubMed]
  19. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
    [CrossRef] [PubMed]
  20. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
    [CrossRef]
  21. X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
    [CrossRef] [PubMed]
  22. L. Jia and E. L. Thomas, “Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal,” Opt. Lett. 36, 3416–3418 (2011).
    [CrossRef] [PubMed]
  23. L. Jia and E. L. Thomas, “Two-pattern compound photonic crystals with a large complete photonic band gap,” Phys. Rev. A 84, 033810 (2011).
    [CrossRef]
  24. L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011).
    [CrossRef] [PubMed]
  25. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
    [CrossRef] [PubMed]
  26. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
    [CrossRef] [PubMed]
  27. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
    [CrossRef]
  28. M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
    [CrossRef]
  29. Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
    [CrossRef]
  30. Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
    [CrossRef]
  31. J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
    [CrossRef]
  32. X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
    [CrossRef]
  33. P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009).
    [CrossRef] [PubMed]
  34. T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
    [CrossRef]
  35. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [CrossRef] [PubMed]
  36. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009).
    [CrossRef] [PubMed]
  37. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [CrossRef]
  38. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
    [CrossRef]
  39. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
    [CrossRef]
  40. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17, 9588–9601 (2009).
    [CrossRef] [PubMed]
  41. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
    [CrossRef] [PubMed]
  42. W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
    [CrossRef]
  43. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
    [CrossRef]
  44. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
    [CrossRef] [PubMed]
  45. A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
    [CrossRef]
  46. A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
    [CrossRef]
  47. A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
    [CrossRef] [PubMed]
  48. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
    [CrossRef] [PubMed]
  49. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
    [CrossRef] [PubMed]
  50. E. Waks and J. Vuckovic, “Dispersive properties and large Kerr nonlinearities in dipole-induced transparency,” Phys. Rev. A 73, 041803(R) (2006).
    [CrossRef]
  51. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
    [CrossRef]
  52. L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
    [CrossRef]
  53. S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
    [CrossRef]
  54. E. Rephaeli and S. Fan, “Few-photon single-atom cavity QED With input-output formalism in Fock space,” IEEE J. Sel. Top. Quantum Electron. 18, 1754–1762 (2012).
    [CrossRef]
  55. Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).
  56. A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 3974–3984 (2010).
    [CrossRef] [PubMed]
  57. D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78, 052321 (2008).
    [CrossRef]
  58. Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
    [CrossRef]
  59. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [CrossRef]
  60. Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
    [CrossRef]
  61. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge University, 2005).
  62. Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013).
    [CrossRef] [PubMed]
  63. A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013).
    [CrossRef]
  64. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef] [PubMed]
  65. A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
    [CrossRef]
  66. A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
    [CrossRef]
  67. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
    [CrossRef] [PubMed]
  68. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
    [CrossRef] [PubMed]
  69. M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006).
    [CrossRef]
  70. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
    [CrossRef]
  71. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
    [CrossRef] [PubMed]
  72. R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
    [CrossRef] [PubMed]
  73. D. Walls and G. Milburm, Quantum Optics (Springer, 1994).
    [CrossRef]
  74. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (Springer-Verlag, 1999).
  75. S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
    [CrossRef]

2013 (6)

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
[CrossRef] [PubMed]

J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
[CrossRef]

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013).
[CrossRef] [PubMed]

A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013).
[CrossRef]

2012 (9)

A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
[CrossRef]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

E. Rephaeli and S. Fan, “Few-photon single-atom cavity QED With input-output formalism in Fock space,” IEEE J. Sel. Top. Quantum Electron. 18, 1754–1762 (2012).
[CrossRef]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
[CrossRef]

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

2011 (11)

L. Jia and E. L. Thomas, “Two-pattern compound photonic crystals with a large complete photonic band gap,” Phys. Rev. A 84, 033810 (2011).
[CrossRef]

L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011).
[CrossRef] [PubMed]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[CrossRef] [PubMed]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[CrossRef] [PubMed]

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

L. Jia and E. L. Thomas, “Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal,” Opt. Lett. 36, 3416–3418 (2011).
[CrossRef] [PubMed]

2010 (12)

A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 3974–3984 (2010).
[CrossRef] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[CrossRef] [PubMed]

S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

2009 (7)

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef] [PubMed]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009).
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009).
[CrossRef] [PubMed]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17, 9588–9601 (2009).
[CrossRef] [PubMed]

2008 (7)

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
[CrossRef]

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78, 052321 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

2007 (4)

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[CrossRef]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

2006 (8)

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Dispersive properties and large Kerr nonlinearities in dipole-induced transparency,” Phys. Rev. A 73, 041803(R) (2006).
[CrossRef]

M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006).
[CrossRef]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

2005 (2)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[CrossRef]

2002 (1)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef] [PubMed]

1999 (1)

Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

Agarwal, G. S.

S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

An, J. H.

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Andersen, U. L.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[CrossRef] [PubMed]

Armen, M. A.

Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013).
[CrossRef] [PubMed]

M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Auffèves-Garnier, A.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Awschalom, D. D.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

Bajcsy, M.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
[CrossRef]

Bajscy, M.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

Barclay, P. E.

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009).
[CrossRef] [PubMed]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009).
[CrossRef] [PubMed]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17, 9588–9601 (2009).
[CrossRef] [PubMed]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Benson, O.

J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
[CrossRef]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009).
[CrossRef] [PubMed]

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Bita, I.

L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011).
[CrossRef] [PubMed]

Bose, R.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[CrossRef] [PubMed]

Bouwmeester, D.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Brennecke, F.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

Chen, Y. L.

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Childress, L. I.

L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[CrossRef]

Chu, M. C.

Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Dinyari, K. N.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef] [PubMed]

Dobrovitski, V. V.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef] [PubMed]

Dombi, A.

A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013).
[CrossRef]

Domokos, P.

A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013).
[CrossRef]

Donner, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Döscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

Du, J. F.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Duan, C. K.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

Englund, D.

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Esslinger, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Fan, S.

E. Rephaeli and S. Fan, “Few-photon single-atom cavity QED With input-output formalism in Fock space,” IEEE J. Sel. Top. Quantum Electron. 18, 1754–1762 (2012).
[CrossRef]

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 3974–3984 (2010).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Fattal, D.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Feiguin, A. E.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

Fejer, M. M.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Feng, M.

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Fu, K. M.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[CrossRef]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (Springer-Verlag, 1999).

Gérard, J. M.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Gong, Q.

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

Greentree, A. D.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Gregor, M.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

Gurudev Dutt, M. V.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Gywat, O.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

Hagemeier, J.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

Hanson, R.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

Harris, J. S.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Harrison, J. P.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[CrossRef]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Heeres, E. C.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Hemmer, P.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Henze, R.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

Hu, C. Y.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

Huang, P.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Huang, S.

S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

Huck, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[CrossRef] [PubMed]

Huo, Y.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Jelezko, F.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Jia, L.

L. Jia and E. L. Thomas, “Two-pattern compound photonic crystals with a large complete photonic band gap,” Phys. Rev. A 84, 033810 (2011).
[CrossRef]

L. Jia and E. L. Thomas, “Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal,” Opt. Lett. 36, 3416–3418 (2011).
[CrossRef] [PubMed]

L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011).
[CrossRef] [PubMed]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Jiang, X. F.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

Jin, J. S.

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Jin, W. L.

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

Kaer, P.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

Kahn, J. M.

Kanamoto, R.

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[CrossRef] [PubMed]

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Kim, E. D.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
[CrossRef]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

Kim, H.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Kim, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
[CrossRef] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Kocabas, S. E.

S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[CrossRef]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Kong, X.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Kumar, S.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[CrossRef] [PubMed]

Kwon, Y. D.

Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013).
[CrossRef] [PubMed]

Lagoudakis, K. G.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

Larsson, M.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef] [PubMed]

Leung, P. T.

Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).

Li, B. B.

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

Li, Y.

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

Liu, Y. C.

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

Löchel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009).
[CrossRef] [PubMed]

Loncar, M.

Lukin, M. D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[CrossRef]

Mabuchi, H.

Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013).
[CrossRef] [PubMed]

M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006).
[CrossRef]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef] [PubMed]

Majumdar, A.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
[CrossRef] [PubMed]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
[CrossRef]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
[CrossRef]

A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
[CrossRef]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 3974–3984 (2010).
[CrossRef] [PubMed]

Mandel, P.

P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge University, 2005).

Manquest, N.

Manson, N. B.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[CrossRef]

Marseglia, L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

Martijn de Sterke, C.

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

McCutcheon, M. W.

Meystre, P.

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[CrossRef] [PubMed]

Milburm, G.

D. Walls and G. Milburm, Quantum Optics (Springer, 1994).
[CrossRef]

Neumann, P.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009).
[CrossRef] [PubMed]

O’Brien, J. L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

Oh, C. H.

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Olivero, P.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Oosterkamp, T. H.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Painter, O.

Pan, J.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Papageorge, A.

A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
[CrossRef]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Park, Y. S.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Pei, P.

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Petroff, P.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Petroff, P. M.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Pfaff, W.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Poizat, J. P.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Povinelli, M. L.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Prawer, S.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Rabeau, J.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Rarity, J. G.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

Rephaeli, E.

E. Rephaeli and S. Fan, “Few-photon single-atom cavity QED With input-output formalism in Fock space,” IEEE J. Sel. Top. Quantum Electron. 18, 1754–1762 (2012).
[CrossRef]

Ritter, S.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Rong, X.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Rundquist, A.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

Salzman, J.

Sandhu, S.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009).
[CrossRef] [PubMed]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17, 9588–9601 (2009).
[CrossRef] [PubMed]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Schell, A. W.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Schietinger, S.

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Schoenfeld, R. S.

J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
[CrossRef]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

Schröder, T.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[CrossRef]

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[CrossRef] [PubMed]

Shen, J. T.

S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[CrossRef]

Shi, F. Z.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Simon, C.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Solomon, G. S.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[CrossRef] [PubMed]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Song, H. S.

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Sorensen, A.

L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[CrossRef]

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

Sridharan, D.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[CrossRef] [PubMed]

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78, 052321 (2008).
[CrossRef]

Steel, M. J.

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Strauß, M.

J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
[CrossRef]

Stuhrmann, N.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

Tamarat, P.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Taylor, J. M.

L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[CrossRef]

Thomas, E. L.

L. Jia and E. L. Thomas, “Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal,” Opt. Lett. 36, 3416–3418 (2011).
[CrossRef] [PubMed]

L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011).
[CrossRef] [PubMed]

L. Jia and E. L. Thomas, “Two-pattern compound photonic crystals with a large complete photonic band gap,” Phys. Rev. A 84, 033810 (2011).
[CrossRef]

Thon, S. M.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Tomljenovic-Hanic, S.

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[CrossRef]

K. J. Vahala, Optical Microcavities (World Scientific Publishing, 2004).

van der Sar, T.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

Vuckovic, J.

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
[CrossRef] [PubMed]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
[CrossRef]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
[CrossRef]

A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
[CrossRef]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 3974–3984 (2010).
[CrossRef] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

E. Waks and J. Vuckovic, “Dispersive properties and large Kerr nonlinearities in dipole-induced transparency,” Phys. Rev. A 73, 041803(R) (2006).
[CrossRef]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

J. Vuckovic, “Quantum optics and cavity QED with quantum dots in photonic crystals,” arXiv: 1402.2541.

Vukics, A.

A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013).
[CrossRef]

Waks, E.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[CrossRef] [PubMed]

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78, 052321 (2008).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

E. Waks and J. Vuckovic, “Dispersive properties and large Kerr nonlinearities in dipole-induced transparency,” Phys. Rev. A 73, 041803(R) (2006).
[CrossRef]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Walls, D.

D. Walls and G. Milburm, Quantum Optics (Springer, 1994).
[CrossRef]

Wang, F.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
[CrossRef] [PubMed]

Wang, H.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Wang, P. F.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Wang, Y.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Wang, Z. X.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Wolters, J.

J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
[CrossRef]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

Wrachtrup, J.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

Wu, Y.

Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).

Xiao, Y. F.

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

Xu, N. Y.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Xu, X. K.

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

Xu, Z. Y.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Yan, M. Y.

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

Yang, W. L.

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Yin, Z. Q.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Young, A.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

Yu, C. S.

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

Yu, X. C.

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

Zhang, C.

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Zoller, P.

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (Springer-Verlag, 1999).

Appl. Phys. Lett. (6)

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. Rephaeli and S. Fan, “Few-photon single-atom cavity QED With input-output formalism in Fock space,” IEEE J. Sel. Top. Quantum Electron. 18, 1754–1762 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013).
[CrossRef]

Nano Lett. (5)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef] [PubMed]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Nat. Photonics (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[CrossRef]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Nature (London) (3)

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010).
[CrossRef]

New J. Phys. (2)

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009).
[CrossRef]

A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. A (20)

S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006).
[CrossRef]

A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012).
[CrossRef]

Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78, 052321 (2008).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011).
[CrossRef]

E. Waks and J. Vuckovic, “Dispersive properties and large Kerr nonlinearities in dipole-induced transparency,” Phys. Rev. A 73, 041803(R) (2006).
[CrossRef]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[CrossRef]

S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[CrossRef]

L. Jia and E. L. Thomas, “Two-pattern compound photonic crystals with a large complete photonic band gap,” Phys. Rev. A 84, 033810 (2011).
[CrossRef]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011).
[CrossRef]

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010).
[CrossRef]

X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012).
[CrossRef]

W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013).
[CrossRef]

J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013).
[CrossRef]

Phys. Rev. B (3)

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010).
[CrossRef]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[CrossRef]

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011).
[CrossRef]

Phys. Rev. Lett. (10)

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material.
[CrossRef] [PubMed]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[CrossRef] [PubMed]

Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013).
[CrossRef] [PubMed]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).
[CrossRef]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[CrossRef] [PubMed]

X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012).
[CrossRef] [PubMed]

L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011).
[CrossRef] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[CrossRef] [PubMed]

A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Science (5)

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[CrossRef] [PubMed]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Other (5)

D. Walls and G. Milburm, Quantum Optics (Springer, 1994).
[CrossRef]

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (Springer-Verlag, 1999).

P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge University, 2005).

K. J. Vahala, Optical Microcavities (World Scientific Publishing, 2004).

J. Vuckovic, “Quantum optics and cavity QED with quantum dots in photonic crystals,” arXiv: 1402.2541.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of optical coupeld system, which is composed of a two-level NV center, a single-mode PC nanocavity and a nearby photonic waveguide serving for in- and outcoupling of light into the nanocavity. The single-mode PC nanocavity containing the NV center is evanescently coupled to the row defect waveguide with the coupling strength κe. The |1〉 ⇔ |2〉 transition of the NV center is coupled to the mode ĉof the PC nanocavity with the coupling strength gcav. κi is the intrinsic loss rates of the nanocavity mode excluding coupling to the NV center and the waveguide. A bichromatic field consisting of a cw control laser and a cw probe laser is injected into the waveguide via grating couplers (see Refs. [67, 68]). Sin and Sout denote the input and the output field in the waveguide. The bubble shows the detailed structure of quantized energy levels and the coupling scheme of the cavity mode for the two-level NV center. |1〉 and |2〉 denote the ground and excited states of the NV center, respectively. A small red sphere shows the position of the NV center.

Fig. 2
Fig. 2

The steady-state population inversion σ̄z as a function of optical driving power Pc for four different values of Δ2. The other system parameters used for the simulation are chosen as gcav/2π = 2.25 GHz, κi/2π = 1.6 GHz, κe/2π = 8 GHz, γspon/2π = 13 MHz, and δ = 0. Curves A–D are for Δ2 = 0, 100, 140, and 180 MHz, respectively.

Fig. 3
Fig. 3

The steady-state population inversion σ̄z as a function of optical driving power Pc for four different values of gcav. The other system parameters for the simulation are chosen as κi/2π = 1.6 GHz, κe/2π = 8 GHz, γspon/2π = 13 MHz, Δ1 = Δ2 = 100 MHz and δ = 0. Curves A–D are for gcav = 1.75, 2.25, 2.75, and 3.25 GHz, respectively.

Fig. 4
Fig. 4

The steady-state population inversion σ̄z as a function of optical driving power Pc for four different values of δ. The other system parameters for the simulation are chosen as gcav/2π = 2.25 GHz, κi/2π = 1.6 GHz, κe/2π = 8 GHz, γspon/2π = 13 MHz, and Δ2 = 0. Curves A–D are for δ = 0, 80, 160, and 190 MHz, respectively.

Fig. 5
Fig. 5

The normalized FWM intensity versus the detuning Δ2. The other system parameters for the simulation are chosen as Pc = 30 pW, Pp = 3 pW, gcav/2π = 2.25 GHz, Ω/2π = 1 GHz, κi/2π = 1.6 GHz, κe/2π = 8 GHz, γspon/2π = 13 MHz, and δ = 80 MHz, respectively.

Fig. 6
Fig. 6

The normalized FWM intensity versus optical driving power Pc. The other system parameters for the simulation are chosen as Pp = 3 pW, gcav/2π = 2.25 GHz, Ω/2π = 1 GHz, κi/2π = 1.6 GHz, κe/2π = 8 GHz, γspon/2π = 13 MHz, Δ2 = 0, and δ = 80 MHz, respectively.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

= h ¯ ω N V σ ^ 22 + h ¯ ω cav c ^ c ^ + i h ¯ g cav ( c ^ σ ^ 21 c ^ σ ^ 12 ) + i h ¯ κ e [ S in ( t ) c ^ S in * ( t ) c ^ ] ,
free = h ¯ ω l ( σ ^ 22 + c ^ c ^ ) ,
U ( t ) = e i free t / h ¯ = e i ω l t ( σ ^ 22 + c ^ c ^ ) ,
rot = U ( t ) U ( t ) i U ( t ) U ( t ) t = U ( t ) ( free ) U ( t ) ,
rot = h ¯ Δ 1 σ ^ 22 + h ¯ Δ 2 c ^ c ^ + i h ¯ g cav ( c ^ σ ^ 21 c ^ σ ^ 12 ) + i h ¯ κ e [ S in ( t ) e i ω l t c ^ S in * ( t ) e i ω l t c ^ ] ,
rot = h ¯ Δ 1 σ ^ 22 + h ¯ Δ 2 c ^ c ^ + i h ¯ g cav ( c ^ σ ^ 21 c ^ σ ^ 12 ) + i h ¯ κ e ( s p c ^ s p * c ^ ) ,
rot = h ¯ Δ 1 σ ^ 22 + h ¯ Δ 2 c ^ c ^ + i h ¯ g cav ( c ^ σ 21 c ^ σ ^ 12 ) + i h ¯ κ e [ ( s c + s p e i Ω t ) c ^ H . C . ] ,
d c ^ d t = g cav σ ^ 12 ( i Δ 2 + κ i / 2 + κ e / 2 ) c ^ + κ e ( s c + s p e i Ω t ) + f ^ c ,
d σ ^ 11 d t = γ spon σ ^ 22 g cav c ^ σ ^ 21 g cav c ^ σ ^ 12 + f ^ 11 ,
d σ ^ 22 d t = γ spon σ ^ 22 + g cav c ^ σ ^ 12 + g cav c ^ σ ^ 21 + f ^ 22 ,
d σ ^ 12 d t = ( i Δ 1 + γ spon / 2 ) σ ^ 12 2 g cav c ^ σ ^ z + f ^ 12 ,
d c d t = g cav σ 12 ( i Δ 2 + κ i / 2 + κ e / 2 ) c + κ e ( s c + s p e i Ω t ) .
d σ 11 d t = γ spon σ 22 g cav c σ 12 * g cav c * σ 12 ,
d σ 22 d t = γ spon σ 22 + g cav c * σ 12 + g cav c σ 12 * ,
d σ 12 d t = ( i Δ 1 + γ spon / 2 ) σ 12 2 g cav c σ z .
c ¯ = F 1 κ e s c F 1 F 2 2 g cav 2 σ ¯ z ,
σ ¯ z = 1 2 γ spon γ spon + 2 g cav 2 ( 1 F 1 + 1 F 1 * ) | c ¯ | 2 ,
σ ¯ 12 = 2 g cav F 1 c ¯ σ ¯ z ,
d δ c d t = g cav δ σ 12 ( i Δ 2 + κ i / 2 + κ e / 2 ) δ c + κ e s p e i Ω t ,
d δ σ z d t = γ spon δ σ z + g cav c * ¯ δ σ 12 g cav δ c * σ ¯ 12 + g cav c ¯ δ σ 12 * + g cav δ c σ ¯ 12 * ,
d δ σ 12 d t = ( i Δ 1 + γ spon / 2 ) δ σ 12 2 g cav c ¯ δ σ z 2 g cav δ c σ ¯ z .
δ c = c + e i Ω t + c e i Ω t ,
δ σ z = σ z + e i Ω t + σ z e i Ω t ,
δ σ 12 = σ 12 + e i Ω t + σ 12 e i Ω t .
D 1 σ 12 + 2 g cav c ¯ σ z + 2 g cav c σ ¯ z = 0 ,
g cav σ 12 + D 2 c = 0 ,
g cav σ 12 + + D 3 c + κ e s p = 0 ,
D 4 σ 12 + + 2 g cav c ¯ σ z + + 2 g cav c + σ ¯ z = 0 ,
( γ spon i Ω ) σ z + + g cav c * ¯ σ 12 + + g cav c * σ ¯ 12 + g cav c ¯ σ 12 * + g cav c + σ ¯ 12 * = 0 ,
( γ spon + i Ω ) σ z + g cav c * ¯ σ 12 + g cav c + * σ ¯ 12 + g cav c ¯ σ 12 + * + g cav c σ ¯ 12 * = 0 ,
S out ( t ) = ( s c + κ e c ¯ ) e i ω c t + ( s p + κ e c + ) e i ( ω c + Ω ) t + κ e c e i ( ω c Ω ) t = ( s c + κ e c ¯ ) e i ω c t Control field + ( s p + κ e c + ) e i ω p t Probe field + κ e c e i ( 2 ω c ω p ) t Degenerate FWM field ,
I FWM = | κ e c s p | 2 .

Metrics