Abstract

We demonstrate a photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a low-power 390 nm pulsed laser. The laser oxidizes a small (< 1 μm) diameter spot, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time. We also demonstrate tuning an individual cavity within a pair of proximity-coupled cavities, showing that this method can be used to tune individual cavities in a cavity network, with applications in quantum simulations and quantum computing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
    [CrossRef]
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [CrossRef] [PubMed]
  3. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
    [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef] [PubMed]
  5. T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
    [CrossRef] [PubMed]
  6. M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
    [CrossRef]
  7. A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
    [CrossRef] [PubMed]
  8. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
    [CrossRef]
  9. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
    [CrossRef]
  10. J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
    [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
    [CrossRef]
  12. N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
    [CrossRef]
  13. S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
    [CrossRef]
  14. T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
    [CrossRef]
  15. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
    [CrossRef]
  16. H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
    [CrossRef]
  17. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
    [CrossRef]
  18. F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
    [CrossRef]
  19. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [CrossRef]
  20. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
    [CrossRef] [PubMed]
  21. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
    [CrossRef]
  22. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  23. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
    [CrossRef]
  24. C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
    [CrossRef]
  25. C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
    [CrossRef]
  26. Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
    [CrossRef]
  27. J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
    [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997).
  29. S. M. Sze, Semiconductor Sensors (John Wiley, 1994).

2013 (1)

T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
[CrossRef]

2012 (6)

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[CrossRef]

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
[CrossRef] [PubMed]

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
[CrossRef]

2011 (2)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
[CrossRef]

2010 (4)

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[CrossRef] [PubMed]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
[CrossRef] [PubMed]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[CrossRef] [PubMed]

2009 (1)

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

2008 (1)

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

2007 (1)

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

2006 (2)

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

2005 (1)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

2001 (1)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

1990 (1)

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

1987 (1)

C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
[CrossRef]

1986 (1)

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Badolato, A.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Bajcsy, M.

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
[CrossRef] [PubMed]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[CrossRef]

Balet, L.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Bamba, M.

M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
[CrossRef]

Bedoya, A. C.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Bose, R.

T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
[CrossRef]

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Cai, T.

T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
[CrossRef]

Carusotto, I.

M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
[CrossRef]

Caselli, N.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

Ciuti, C.

M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
[CrossRef]

Cole, J. H.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Dndar, M. A.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Domachuk, P.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Eggleton, B. J.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Eggleton, Benjamin J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Ellis, B.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[CrossRef] [PubMed]

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Faraon, A.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Fiore, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Francardi, M.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Gerardino, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Gilgen, H.

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

Gong, Y.

Greentree, A. D.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
[CrossRef]

Grillet, C.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Gurioli, M.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Harris, J. S.

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Högerle, C.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

Hollenberg, L. C. L.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
[CrossRef]

Hu, E.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

Hua, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Imamoglu, A.

M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Imamolu, A.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

Intonti, F.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

Kerckhoff, J.

J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Kiravittaya, S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Kumar, S.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Lee, H. S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Li, L. H.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Liew, T. C. H.

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[CrossRef] [PubMed]

Loncar, M.

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Lu, Z.

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

Luther-Davies, B.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Mabuchi, H.

J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
[CrossRef] [PubMed]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Majumdar, A.

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
[CrossRef] [PubMed]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[CrossRef]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Monat, C.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Nötzel, R.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Nurdin, H. I.

J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
[CrossRef] [PubMed]

Osgood, R. M.

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
[CrossRef]

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997).

Pavlichin, D. S.

J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
[CrossRef] [PubMed]

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Petykiewicz, J.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
[CrossRef]

Plumhof, J. D.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Podlesnik, D.

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

Podlesnik, D. V.

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rastelli, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Riboli, F.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

Rundquist, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
[CrossRef] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[CrossRef] [PubMed]

Savona, V.

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Schmidt, M.

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

Schmidt, M. T.

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
[CrossRef]

Schmidt, O. G.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

Shambat, G.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Solomon, G. S.

T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
[CrossRef]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Speijcken, N. W. L.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Sze, S. M.

S. M. Sze, Semiconductor Sensors (John Wiley, 1994).

Tahan, C.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

van der Heijden, R. W.

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

Vignolini, S.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

Vuckovic, J.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
[CrossRef]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[CrossRef]

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
[CrossRef] [PubMed]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[CrossRef] [PubMed]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Waks, E.

T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
[CrossRef]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Wiersma, D. S.

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Yu, C.

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

Yu, C. F.

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
[CrossRef]

Appl. Phys. Lett. (10)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012).
[CrossRef]

S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010).
[CrossRef]

T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012).
[CrossRef]

Chem. Phys. Lett. (1)

C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986).
[CrossRef]

J. Chem. Phys. (1)

Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987).
[CrossRef]

Nat. Photon. (1)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Nat. Phys. (1)

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006).
[CrossRef]

Nature (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011).
[CrossRef]

Phys. Rev. B (1)

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[CrossRef]

Phys. Rev. E (1)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010).
[CrossRef] [PubMed]

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
[CrossRef] [PubMed]

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[CrossRef] [PubMed]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997).

S. M. Sze, Semiconductor Sensors (John Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a,b) The transverse electric field (Ey) distribution for the fundamental modes of a (a) single L3 cavity and (b) two coupled L3 cavities, calculated in a finite-difference time domain (FDTD) simulation. The coupled cavity supports both anti-symmetric and symmetric modes; here we have plotted the latter. The black circles indicate the locations of the holes in the photonic crystal membrane. (c,d) Scanning electron microscopy (SEM) images of a single (c) and coupled (d) GaAs L3 cavities, taken before performing any tuning.

Fig. 2
Fig. 2

Photoluminescence spectrum of (a,b) a single L3 cavity and (c,d) coupled L3 cavities as a function of time while tuning with the 390 nm UV laser. Due to Purcell enhancement, the cavity resonances are clearly visible. We have performed background subtraction, and individually normalized the spectra in (b, d) for clarity. (a) The single cavity was blueshifted by 7.8 nm during the tuning process. (b) Initial and final photoluminescence spectra for the same cavity. The cavity quality factor was somewhat degraded by the tuning process, being reduced from Qinitial = 2990 to Qfinal = 2100. (c) In the coupled-cavity system, one cavity was tuned by 9.1 nm, and the other cavity was tuned by only 1.0 nm, resulting in a clear anti-crossing where their resonances became degenerate. The experimentally measured coupling strength J was 0.98 nm, close to the simulated value of 1.2 nm. (d) Initial (0 min), intermediate (30 min), and final (131 min) spectra for the coupled cavity system. The spectrometer was aligned with the tuned cavity, resulting in a brighter PL signal from the tuned cavity than the untuned cavity through most of the tuning process. At the anti-crossing, the two resonances have equal intensities: both the symmetric and antisymmetric modes split energy evenly between the two cavities [23].

Fig. 3
Fig. 3

(a) Non-contact atomic-force microscopy (nc-AFM) scan of a photo-oxidized spot on an unpatterned GaAs membrane. The spot was oxidized using a tightly-focused 10 μW spot for 120 min, the same parameters as used to tune the coupled system in Fig. 2(c). The growth of oxide produced a 101.6 ± 1.0 nm tall bump with a full-width half maximum (FWHM) of 628 ± 60 nm. The contour interval is 10 nm. (b) nc-AFM and (c) scanning electron microscopy (SEM) scans of the coupled L3 system tuned in Fig. 2(c), taken after performing tuning. The photonic crystal holes appear to be conical in the AFM scan due to the shape of the AFM tip. The oxidation is visible as a slight discoloration and reduction in hole size in the SEM image.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ω 1 , 2 = 1 2 ( ω 1 + ω 2 ) ± 1 2 ( ω 1 ω 2 ) 2 + J 2
Δ T = Φ 0 α e α z ρ C

Metrics