Abstract

We demonstrated a kind of birefringence-controllable hybrid photonic crystal fibers (HPCFs) by selectively infiltrating air holes of PCFs with index-tunable liquids processing higher index than silica background. Detailed theoretical investigations on mode couplings from fundamental core mode to high-index-liquid-rod modes and birefringence properties of several HPCFs were presented. Strong wavelength dependence of phase and group birefringence was found, and HPCFs with different arrangements of high index liquid rods possess distinct birefringence characteristics. Then, the Sagnac interferometers (SIs) based on two typical HPCFs with different liquid-rod arrangements were theoretically and experimentally studied. The results indicated the SIs exhibit different transmission spectra and temperature responses due to the distinct birefringence features of HPCFs. A temperature sensitivity of −45.8 nm/°C at 56.5 °C was achieved using one HPCF, and a sensitivity of −11.6 nm/°C from 65 °C to 85 °C was achieved using the other HPCF. The thermal tunable HPCFs with birefringence-controllable properties will provide great potential for a variety of tunable optical devices and sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor

Tingting Han, Yan-ge Liu, Zhi Wang, Junqi Guo, Zhifang Wu, Shuanxia Wang, Zhili Li, and Wenyuan Zhou
Opt. Express 21(1) 122-128 (2013)

Tunable fiber polarizing filter based on a single-hole-infiltrated polarization maintaining photonic crystal fiber

Junqi Guo, Yan-ge Liu, Zhi Wang, Tingting Han, Wei Huang, and Mingming Luo
Opt. Express 22(7) 7607-7616 (2014)

Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber

Mingming Luo, Yan-ge Liu, Zhi Wang, Tingting Han, Zhifang Wu, Junqi Guo, and Wei Huang
Opt. Express 21(25) 30911-30917 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  3. J. Liou, S. Huang, and C. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283(6), 971–974 (2010).
    [Crossref]
  4. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [Crossref] [PubMed]
  5. M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30(8), 824–826 (2005).
    [Crossref] [PubMed]
  6. X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
    [Crossref]
  7. V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
    [Crossref]
  8. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
    [Crossref] [PubMed]
  9. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
    [Crossref] [PubMed]
  10. R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett. 34(20), 3119–3121 (2009).
    [Crossref] [PubMed]
  11. J. K. Lyngsø, B. J. Mangan, C. B. Olausson, and P. J. Roberts, “Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers,” Opt. Express 18(13), 14031–14040 (2010).
    [Crossref] [PubMed]
  12. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [Crossref] [PubMed]
  13. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
    [Crossref] [PubMed]
  14. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002).
    [Crossref] [PubMed]
  15. X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
    [Crossref]
  16. T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
    [Crossref]
  17. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
    [Crossref] [PubMed]
  18. C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
    [Crossref]
  19. G. Kim, T. Y. Cho, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009).
    [Crossref] [PubMed]
  20. T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
    [Crossref] [PubMed]
  21. J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
    [Crossref]
  22. M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011).
    [Crossref] [PubMed]
  23. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  24. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
    [Crossref]
  25. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  26. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]

2013 (1)

2012 (2)

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

2011 (2)

2010 (2)

J. K. Lyngsø, B. J. Mangan, C. B. Olausson, and P. J. Roberts, “Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers,” Opt. Express 18(13), 14031–14040 (2010).
[Crossref] [PubMed]

J. Liou, S. Huang, and C. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283(6), 971–974 (2010).
[Crossref]

2009 (5)

2008 (2)

2007 (2)

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[Crossref] [PubMed]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

2006 (2)

A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
[Crossref] [PubMed]

X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
[Crossref]

2005 (1)

2004 (1)

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2002 (4)

Abeeluck, A. K.

Alam, M. S.

Bouwmans, G.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
[Crossref]

Cerqueira S, A.

Chen, J.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Cho, T. Y.

Cordeiro, C. M. B.

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[Crossref]

Cui, Y.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

Czapla, A.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Dabrowski, R.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Delplace, K.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
[Crossref]

Demokan, M. S.

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[Crossref] [PubMed]

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Domanski, A.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Dong, X.

Douay, M.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
[Crossref]

Du, J.

Eggleton, B. J.

Ertman, S.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

George, A. K.

Goto, R.

Guo, J.

Hale, A.

Han, T.

T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
[Crossref] [PubMed]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Han, Y. G.

He, S.

Headley, C.

Hu, J. J.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

Huang, S.

J. Liou, S. Huang, and C. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283(6), 971–974 (2010).
[Crossref]

Hwang, K.

Jackson, S. D.

Jin, S.

Jin, W.

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[Crossref] [PubMed]

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Kerbage, C.

Kim, G.

Knight, J. C.

Koshiba, M.

Kuhlmey, B. T.

Lee, K.

Lee, K. S.

Lee, S. B.

Li, Z.

Liao, C. R.

Lim, J. L.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

Liou, J.

J. Liou, S. Huang, and C. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283(6), 971–974 (2010).
[Crossref]

Litchinitser, N. M.

Liu, B.

Liu, Y.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[Crossref] [PubMed]

Liu, Y. G.

Lu, C.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Luan, F.

Luo, L.

X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
[Crossref]

Lyngsø, J. K.

Mangan, B. J.

Milenko, K.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

Nowinowski-Kruszelnicki, E.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Olausson, C. B.

Prill Sempere, L.

Pureur, V.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
[Crossref]

Qian, W.

Quiquempois, Y.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
[Crossref]

Reyes, P.

Roberts, P. J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

Saitoh, K.

Schmidt, M. A.

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[Crossref]

Shum, P.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
[Crossref]

Steinvurzel, P.

Takenaga, K.

Tefelska, M.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Tyagi, H. K.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[Crossref]

Wang, D. N.

Wang, S.

Wang, Y.

Wang, Y. X.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

Wang, Z.

Wei, C.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Wei, H.

Westbrook, P. S.

Windeler, R. S.

Wolinski, T.

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

Wolinski, T. R.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Wu, D. K. C.

Wu, Z.

Xiao, L.

Yan, M.

X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
[Crossref]

Yang, M.

Yang, X.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Yu, C.

J. Liou, S. Huang, and C. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283(6), 971–974 (2010).
[Crossref]

Yu, X.

X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
[Crossref]

Zhang, S.

Zhang, Z.

Zhao, C.

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Zhao, C. L.

Zheng, X.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Zhou, W.

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[Crossref]

Zou, B.

Appl. Phys. Lett. (2)

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett. 94(13), 131102 (2009).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

IEEE Photon. J. (1)

J. J. Hu, P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic cystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4(5), 2010–2016 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[Crossref]

X. Yu, M. Yan, L. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett. 18(11), 1243–1245 (2006).
[Crossref]

C. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

J. Lightwave Technol. (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Liou, S. Huang, and C. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283(6), 971–974 (2010).
[Crossref]

Opt. Express (7)

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
[Crossref] [PubMed]

G. Kim, T. Y. Cho, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
[Crossref] [PubMed]

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[Crossref] [PubMed]

J. K. Lyngsø, B. J. Mangan, C. B. Olausson, and P. J. Roberts, “Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers,” Opt. Express 18(13), 14031–14040 (2010).
[Crossref] [PubMed]

T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
[Crossref] [PubMed]

Opt. Lett. (8)

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011).
[Crossref] [PubMed]

W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref] [PubMed]

R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett. 34(20), 3119–3121 (2009).
[Crossref] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[Crossref] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30(8), 824–826 (2005).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12–13), 1021–1032 (2007).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

(a) Cross-section of the PCF used in this paper; (b)-(d) Theoretical models for simulation, where the white holes are air holes and the black holes are infiltrated with high index liquids, and they are called HPCF1, HPCF2, HPCF3 in turn.

Fig. 2
Fig. 2

(a) The effective refractive indices of core fundamental mode and high index rod modes at x-(black solid curves) and y-polarizations (red dashed curves) for HPCF1. The inset shows the core fundamental mode intensity distribution at wavelength of 1.700 μm. (b) The mode intensity distributions of x-(upper) and y-polarized modes (below) at points of A, B, C, D, E and F, respectively.

Fig. 3
Fig. 3

Variation of modal phase birefringence B (black curves) and group birefringence Bg (red curves) of HPCF1 versus wavelength. Black dashed line represents zero B, and red dashed line represents zero Bg.

Fig. 4
Fig. 4

(a) Effective refraction indices of core fundamental mode and high index rod modes of HPCF2 versus wavelength at x-(black solid curves) and y-polarizations (red dashed curves), respectively. (b) Variation of B (black curves) and Bg (red curves) with wavelength of HPCF2, and black dashed line represents zero B.

Fig. 5
Fig. 5

Effective refractive indices of core fundamental modes of HPCF3 (black curves), HPCF2 (red curves) and HPCF1 (blue curves) at x-polarization.

Fig. 6
Fig. 6

Comparison of B (a) and Bg (b) of HPCF3 (black curves), HPCF2 (red curves), and HPCF1 (blue curves).

Fig. 7
Fig. 7

Simulation models of the other four kinds of HPCFs, called (a) HPCF4, (b) HPCF5, (c) HPCF6, and (d) HPCF7, where the white holes are air holes and the black holes are high index liquids.

Fig. 8
Fig. 8

(a) Effective indices of core fundamental mode and high-index-rod modes of HPCF4 versus wavelength at x-(black solid curves) and y-polarizations (red dashed curves). The inset shows the comparison of mode dispersion curves between HPCF1 and HPCF4 at short wavelength region for x-polarization. (b) Variation of the phase birefringence B (black curve) and group birefringence Bg (red curve) of HPCF4 versus wavelength.

Fig. 9
Fig. 9

Variation of (a) the phase birefringence B and (b) group birefringence Bg with wavelength of HPCF5 (black curves), HPCF6 (red curves) and HPCF7 (blue curves).

Fig. 10
Fig. 10

Schematic diagram of the proposed HPCF based SI.

Fig. 11
Fig. 11

(a) Variations of B at temperatures 25 °C (black curves) and 30 °C (red curves) for HPCF3, respectively. (b) Variation of B ( λ , T ) / T at 25 °C dependence on wavelength for HPCF 3.

Fig. 12
Fig. 12

Calculated temperature sensitivity S versus wavelength of HPCF3 based SI at 25 °C.

Fig. 13
Fig. 13

(a) Variations of B versus at temperatures 25 °C (black curve) and 30 °C (red curve) for HPCF4, respectively. (b) Variation of B ( λ , T ) / T versus wavelength at 25 °C for HPCF4.

Fig. 14
Fig. 14

Calculated temperature sensitivity S of HPCF4 based SI versus wavelength at 25 °C. The red dashed line represents the zero S and the vertical black dashed line represents the wavelength where Bg equals to zero.

Fig. 15
Fig. 15

(a) Experimental transmission spectrum of the HPCF4. (b) Transmission spectra of HPCF4 based SI at different temperatures from 38.0 °C to 41.0 °C when L = 25 cm.

Fig. 16
Fig. 16

(a) Experimental wavelengths variation (the circles) of dips A-F from 25 °C to 56.5 °C, and the solid curves are the nonlinear fitting curves of experimental results. (b) The temperature sensitivities S of dips A, B, C, D, E and F dependence on temperature.

Fig. 17
Fig. 17

Calculated (a) phase birefringence B and (b) group birefringence versus wavelength for HPCF8 (black curves) and HPCF3 (red curves). The inset is the cross-section of HPCF8 illuminated by the visible light, and the bright holes represent the liquid-filled holes.

Fig. 18
Fig. 18

(a) Transmission spectra of HPCF8 based SI at temperatures 25°C and 60°C. (b) Variations of interference dips A-D shown in (a) with temperature increasing. The solid lines are the linear fitting.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B= n x n y , B g =Bλ dB dλ ,
T r ( λ ) = 1 - cos ( δ ) 2 ,
2 π B ( λ ) L λ = 2 m π , m = 0 , ± 1 , ± 2...... ,
[ L B ( λ , T ) T + L B ( λ , T ) λ d λ ( T ) d T + B ( λ , T ) d L d T ] λ ( T ) B ( λ , T ) L d λ d T λ 2 ( T ) = 0 ,
S ( T ) = d λ d T = B ( λ , T ) T λ ( T ) + B ( λ , T ) λ ( T ) α B g ( λ , T ) .

Metrics