Abstract

Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
    [CrossRef]
  2. M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
    [CrossRef]
  3. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive Parallax Barriers: Optimizing Dual-layer 3D Displays using Low-rank Light Field Factorization,” in “ACM Trans. Graph. (SIGGRAPH Asia),” 29(2010), 163.
  4. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
    [CrossRef]
  5. D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).
  6. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
    [CrossRef]
  7. J. Platt, “Optimal Filtering for Patterned Displays,” IEEE Signal Processing Letters 7, 179–180 (2002).
    [CrossRef]
  8. N. Damera-Venkata and N. L. Chang, “Display Supersampling,” ACM Trans. Graph. 28, 1–19 (2009).
    [CrossRef]
  9. C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in Proc. of IEEE International Workshop on Projector-Camera Systems, 354–356 (IEEE, 2003).
  10. W. Allen and R. Ulichney, “Wobulation: Doubling the addressed Resolution of Projection Displays,” “Proc. SID 47”,  36, 1514–1517 (2005).
    [CrossRef]
  11. F. Berthouzoz and R. Fattal, “Resolution Enhancement by Vibrating Displays,” ACM Trans. Graph. 31, 1–14 (2012).
    [CrossRef]
  12. P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
    [CrossRef]
  13. B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing,” ACM Trans. Graph. (SIGGRAPH) 31, 1–122 (2012).
    [CrossRef]
  14. F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
    [CrossRef]
  15. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
    [CrossRef]
  16. M. Yan, “Convergence Analysis of SART by Bregman Iteration and Dual Gradient Descent,” UCLA CAM report pp. 10–27 (2010).
  17. M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
    [CrossRef]
  18. S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
    [CrossRef]
  19. S. Baker and T. Kanade, “Limits on Super-Resolution and How to Break Them,” Proc. IEEE CVPR, 24:9,1167–1183(2000).
  20. P. D. Burns, “Slanted-edge mtf for digital camera and scanner analysis,” in “Is and Ts Pics Conference,” (Society for Imaging Science & Technology, 2000), pp. 135–138.

2012 (3)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
[CrossRef]

F. Berthouzoz and R. Fattal, “Resolution Enhancement by Vibrating Displays,” ACM Trans. Graph. 31, 1–14 (2012).
[CrossRef]

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing,” ACM Trans. Graph. (SIGGRAPH) 31, 1–122 (2012).
[CrossRef]

2011 (3)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
[CrossRef]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

2010 (1)

M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
[CrossRef]

2009 (1)

N. Damera-Venkata and N. L. Chang, “Display Supersampling,” ACM Trans. Graph. 28, 1–19 (2009).
[CrossRef]

2005 (2)

W. Allen and R. Ulichney, “Wobulation: Doubling the addressed Resolution of Projection Displays,” “Proc. SID 47”,  36, 1514–1517 (2005).
[CrossRef]

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

2004 (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

2003 (1)

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

2002 (1)

J. Platt, “Optimal Filtering for Patterned Displays,” IEEE Signal Processing Letters 7, 179–180 (2002).
[CrossRef]

2000 (1)

S. Baker and T. Kanade, “Limits on Super-Resolution and How to Break Them,” Proc. IEEE CVPR, 24:9,1167–1183(2000).

Allen, W.

W. Allen and R. Ulichney, “Wobulation: Doubling the addressed Resolution of Projection Displays,” “Proc. SID 47”,  36, 1514–1517 (2005).
[CrossRef]

Baker, S.

S. Baker and T. Kanade, “Limits on Super-Resolution and How to Break Them,” Proc. IEEE CVPR, 24:9,1167–1183(2000).

Berthouzoz, F.

F. Berthouzoz and R. Fattal, “Resolution Enhancement by Vibrating Displays,” ACM Trans. Graph. 31, 1–14 (2012).
[CrossRef]

Bimber, O.

M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
[CrossRef]

Boyd, S.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

Burns, P. D.

P. D. Burns, “Slanted-edge mtf for digital camera and scanner analysis,” in “Is and Ts Pics Conference,” (Society for Imaging Science & Technology, 2000), pp. 135–138.

Butler, A.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Chan, E.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

Chang, N. L.

N. Damera-Venkata and N. L. Chang, “Display Supersampling,” ACM Trans. Graph. 28, 1–19 (2009).
[CrossRef]

Chu, E.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

Damera-Venkata, N.

N. Damera-Venkata and N. L. Chang, “Display Supersampling,” ACM Trans. Graph. 28, 1–19 (2009).
[CrossRef]

Didyk, P.

P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
[CrossRef]

Durand, F.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

Eckstein, J.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

Eiseman, E.

P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
[CrossRef]

Fattal, R.

F. Berthouzoz and R. Fattal, “Resolution Enhancement by Vibrating Displays,” ACM Trans. Graph. 31, 1–14 (2012).
[CrossRef]

Ghosh, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Gopi, M.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing,” ACM Trans. Graph. (SIGGRAPH) 31, 1–122 (2012).
[CrossRef]

Gross, M.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Grosse, M.

M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
[CrossRef]

Grundhöfer, A.

M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
[CrossRef]

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
[CrossRef]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
[CrossRef]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive Parallax Barriers: Optimizing Dual-layer 3D Displays using Low-rank Light Field Factorization,” in “ACM Trans. Graph. (SIGGRAPH Asia),” 29(2010), 163.

Hodges, S.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Holzschuch, N.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

Izadi, S.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Jaynes, C.

C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in Proc. of IEEE International Workshop on Projector-Camera Systems, 354–356 (IEEE, 2003).

Kanade, T.

S. Baker and T. Kanade, “Limits on Super-Resolution and How to Break Them,” Proc. IEEE CVPR, 24:9,1167–1183(2000).

Kim, Y.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive Parallax Barriers: Optimizing Dual-layer 3D Displays using Low-rank Light Field Factorization,” in “ACM Trans. Graph. (SIGGRAPH Asia),” 29(2010), 163.

Koller-Meier, E.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Kunz, A.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Lamboray, E.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Lang, S.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Lanman, D.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
[CrossRef]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
[CrossRef]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive Parallax Barriers: Optimizing Dual-layer 3D Displays using Low-rank Light Field Factorization,” in “ACM Trans. Graph. (SIGGRAPH Asia),” 29(2010), 163.

Majumder, A.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing,” ACM Trans. Graph. (SIGGRAPH) 31, 1–122 (2012).
[CrossRef]

Myszkowski, K.

P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
[CrossRef]

Naef, M.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Parikh, N.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

Peleato, B.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

Platt, J.

J. Platt, “Optimal Filtering for Patterned Displays,” IEEE Signal Processing Letters 7, 179–180 (2002).
[CrossRef]

Ramakrishnan, D.

C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in Proc. of IEEE International Workshop on Projector-Camera Systems, 354–356 (IEEE, 2003).

Raskar, R.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
[CrossRef]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
[CrossRef]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive Parallax Barriers: Optimizing Dual-layer 3D Displays using Low-rank Light Field Factorization,” in “ACM Trans. Graph. (SIGGRAPH Asia),” 29(2010), 163.

Ritschel, T.

P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
[CrossRef]

Rosenfeld, D.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Sajadi, B.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing,” ACM Trans. Graph. (SIGGRAPH) 31, 1–122 (2012).
[CrossRef]

Seetzen, H.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Seidel, H.-H.

P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
[CrossRef]

Sillion, F. X.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

Soler, C.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

Spagno, C.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Stuerzlinger, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Svoboda, T.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Taylor, S.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Trentacoste, M.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Ulichney, R.

W. Allen and R. Ulichney, “Wobulation: Doubling the addressed Resolution of Projection Displays,” “Proc. SID 47”,  36, 1514–1517 (2005).
[CrossRef]

Van Gool, L.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Villar, N.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Vorozcovs, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Ward, G.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Westhues, J.

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

Wetzstein, G.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
[CrossRef]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
[CrossRef]

M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
[CrossRef]

Whitehead, L.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

Würmlin, S.

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

Yan, M.

M. Yan, “Convergence Analysis of SART by Bregman Iteration and Dual Gradient Descent,” UCLA CAM report pp. 10–27 (2010).

ACM Trans. Graph. (3)

M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber, “Coded Aperture Projection,” ACM Trans. Graph. 29, 1–12 (2010).
[CrossRef]

N. Damera-Venkata and N. L. Chang, “Display Supersampling,” ACM Trans. Graph. 28, 1–19 (2009).
[CrossRef]

F. Berthouzoz and R. Fattal, “Resolution Enhancement by Vibrating Displays,” ACM Trans. Graph. 31, 1–14 (2012).
[CrossRef]

ACM Trans. Graph. (Proc. SIGGRAPH) (1)

M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, and et al., “blue-c: a spatially immersive display and 3d video portal for telepresence,” “ACM Trans. Graph. (Proc. SIGGRAPH),”  22819–827 (2003).
[CrossRef]

ACM Trans. Graph. (SIGGRAPH Asia) (1)

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-layer LCDs,” ACM Trans. Graph. (SIGGRAPH Asia) 30, 186 (2011).

ACM Trans. Graph. (SIGGRAPH) (5)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. (SIGGRAPH) 31, 80 (2012).
[CrossRef]

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. (SIGGRAPH) 23, 760–768 (2004).
[CrossRef]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays,” ACM Trans. Graph. (SIGGRAPH) 30, 1–12 (2011).
[CrossRef]

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing,” ACM Trans. Graph. (SIGGRAPH) 31, 1–122 (2012).
[CrossRef]

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Frequency Analysis of Light Transport,” ACM Trans. Graph. (SIGGRAPH) 24, 1115–1126 (2005).
[CrossRef]

Foundations and Trends in Machine Learning (1)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1–122 (2011).
[CrossRef]

IEEE Signal Processing Letters (1)

J. Platt, “Optimal Filtering for Patterned Displays,” IEEE Signal Processing Letters 7, 179–180 (2002).
[CrossRef]

Proc. IEEE CVPR (1)

S. Baker and T. Kanade, “Limits on Super-Resolution and How to Break Them,” Proc. IEEE CVPR, 24:9,1167–1183(2000).

Proc. SID 47 (1)

W. Allen and R. Ulichney, “Wobulation: Doubling the addressed Resolution of Projection Displays,” “Proc. SID 47”,  36, 1514–1517 (2005).
[CrossRef]

Other (6)

P. D. Burns, “Slanted-edge mtf for digital camera and scanner analysis,” in “Is and Ts Pics Conference,” (Society for Imaging Science & Technology, 2000), pp. 135–138.

C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in Proc. of IEEE International Workshop on Projector-Camera Systems, 354–356 (IEEE, 2003).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive Parallax Barriers: Optimizing Dual-layer 3D Displays using Low-rank Light Field Factorization,” in “ACM Trans. Graph. (SIGGRAPH Asia),” 29(2010), 163.

M. Yan, “Convergence Analysis of SART by Bregman Iteration and Dual Gradient Descent,” UCLA CAM report pp. 10–27 (2010).

S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, “Going beyond the display: a surface technology with an electronically switchable diffuser,” in Proc. UIST (2008), pp. 269–278.
[CrossRef]

P. Didyk, E. Eiseman, T. Ritschel, K. Myszkowski, and H.-H. Seidel, “Apparent Resolution Display Enhancement for Moving Images,” ACM Trans. Graph. (SIGGRAPH)29(2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Compressive superresolution display. The proposed display architecture comprises two stacked high-speed liquid crystal displays (LCDs) covered by a diffuser in a). A target high-resolution image is then decomposed into a set of patterns that are shown on the front and rear LCD in quick succession in d). Compared to the native resolution of each panel in top c), the proposed compressive display approach achieves significant improvements in resolution bottom c) without any mechanically moving parts. Display content under CC license: http://goo.gl/KYR3Tp

Fig. 2
Fig. 2

Schematic of display components and parameters in a). A diffuser is directly observed by the viewer and optically projects a 4D light field into a superresolved 2D image. The light field is emitted by two high-speed LCD panels. Optically, their combined effect is a multiplication allowing the light field to be represented by the outer product of their respective patterns f (ξ1) and g(ξ2) in b). The pixels on the diffuser have a resolution exceeding that of either LCD panel, their integration areas are illustrated in red in b).

Fig. 3
Fig. 3

a) – c): High dynamic range display mode. The diffuser is switched off and a light field with no angular variation, but a higher contrast than that of the LCD panels is emitted. With a simulated black level of 15%, a conventional display only achieves a low dynamic range in a) whereas the proposed dual layer display (4-frame time-multiplexed here) significantly increases the dynamic range for 2D image display in b). d) – e): Compressive light field display mode. We can use the algorithm by Lanman et al. [3] to generate low-rank glasses-free 3D content with the diffuser switched off. Simulated here is a rank-8 light field that has 5 × 3 views. In e) we show a single time frame for both the front and the rear liquid crystal panel.

Fig. 4
Fig. 4

Conditioning analysis for a target 2× superresolution. We evaluate the condition number of the projection matrix for a varying distance between front LCD and diffuser as well as varying diffuser spread. A lower condition number corresponds to optical setups that are better suited for superresolution display.

Fig. 5
Fig. 5

Quantitative analysis of the proposed display architecture. a): we simulate reconstructions of a test scene for a varying distance between front LCD and diffuser. The resulting image quality is best for a small distance. b): reconstruction quality of a test scene on the prototype device is simulated for an increasing rank or number of subframes. While a higher rank allows for more degrees of freedom in the light field synthesis, only minor improvements in image quality are observed for ranks higher than six. Therefore, readily-available LCD panels with 120 or 240 Hz are well-suited for computational superresolution display. c): we compare the proposed method to Optical Pixel Sharing, wobulation, and subpixel rendering for a varying superresolution factor.

Fig. 6
Fig. 6

Quantitative resolution analysis for several different super-resolution displays based on simulated images for each system. We show the modulation transfer function (MTF) for each system, as measured with Burns’ slanted edge method [20]. The curves are normalized such that the Nyquist limit for the native hardware resolution is at 1. The black curves show slanted edge results for 2× and 3× superresolution target images. Our approach (red curves) generally preserves the most high frequencies, compared to other methods such as Optical Pixel Sharing and wobulation.

Fig. 7
Fig. 7

Measured diffusion point spread function of the prototype in a). The angular profile of the measured PSF is well-modeled by a rotationally-symmetric cosine function in b).

Fig. 8
Fig. 8

a): Showing a high resolution target image (left) on a lower-resolution display results in a loss of image features (center). The proposed method is capable of preserving such features by displaying superresolved image content (right). b) – c): Photographs of prototype computational superresolution display. Each of the example scenes is superresolved at 5×. The top row of each example shows photographs captured at the native display resolution while the bottom shows our method. Isolated and thin high-frequency details such as text on signs, butterfly antennae, and sharp off-axis edges are significantly enhanced by the proposed method. Faces are also dramatically improved as are textured regions such as the bananas, plant, and clothing. Display content under CC license: http://goo.gl/RwXvVV http://goo.gl/DdNka3

Fig. 9
Fig. 9

Additional prototype results: a) and b) are showing a lower-resolution conventional display results in a loss of image features (on the left). The proposed method reconstructs high frequencies leading to increases contrast and sharper edges (right). Display content under CC license: http://www.sintel.org.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i ( x ) = Ω ν l ( x , ν ) d ν .
l ˜ ( x , ν ) = 1 K k = 1 K f ( k ) ( x d ν ) g ( k ) ( x ( d + d l ) ν ) ,
i ˜ ( x ) = Ω ν 1 K k = 1 K ( f ( k ) ( x d ν ) g ( k ) ( x ( d + d l ) ν ) ) d ν = 1 K k = 1 K ϕ ( x ξ 1 , x ξ 2 ) ( f ( k ) ( ξ 1 ) g ( k ) ( ξ 2 ) ) d ξ 1 , 2 .
ϕ ( ξ 1 , ξ 2 ) = rect ( ξ 1 / s 1 ) rect ( ξ 2 / s 2 ) δ ( ξ 2 s 2 s 1 ξ 1 ) ,
i = P vec ( FG T ) .
minimize { F , G } i P vec ( FG T ) 2 2 s . t . 0 F , G 1
minimize { F , G } FG T ivec ( l ) F 2 s . t . Pl = i , 0 l , 0 F , G 1
l argmin { l } p ( F , G , l , λ ) = argmin { l } FG T ivec ( l ) F 2 + ρ Pl i + u 2 2 s . t . 0 l { F , G } argmin { F , G } p ( F , G , l , λ ) = argmin { l } FG T ivec ( l ) F 2 s . t . 0 F , G l u u + ( Pl i )

Metrics