Abstract

We report on an extremely simple, low cost and highly stable way to convert a standard microscope into a holographic one. The proposed architecture is based on a common-path interferometric layout where the input plane is spatially-multiplexed to allow reference beam transmission in a common light-path with the imaging branch. As consequence, the field of view provided by the layout is reduced. The use of coherent illumination (instead of the broadband one included in the microscope) and a properly placed one-dimensional diffraction grating (needed for the holographic recording) complete the experimental layout. The proposed update is experimentally validated in a regular Olympus BX-60 upright microscope showing calibration (USAF resolution test) as well as biological (red blood cells and sperm cells) images for different microscope objectives.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. G. L. Rogers, “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh A 63, 193–221 (1952).
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962).
    [CrossRef]
  4. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53(12), 1377–1381 (1963).
    [CrossRef]
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54(11), 1295–1301 (1964).
    [CrossRef]
  6. G. W. Stroke, “Lensless Fourier transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
    [CrossRef]
  7. D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56(7), 849–856 (1966).
    [CrossRef]
  8. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [CrossRef]
  9. T. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
    [CrossRef]
  10. G. von Bally, Holography in Medicine and Biology (Springer, 1979).
  11. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).
  12. N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, eds., Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
  13. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  15. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13(18), 6738–6749 (2005).
    [CrossRef] [PubMed]
  16. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
    [CrossRef] [PubMed]
  17. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [CrossRef] [PubMed]
  18. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  19. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [CrossRef] [PubMed]
  20. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [CrossRef] [PubMed]
  21. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
    [CrossRef] [PubMed]
  22. D. M. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35(1), 131–148 (1996).
    [CrossRef] [PubMed]
  23. G. S. Kino and S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29(26), 3775–3783 (1990).
    [CrossRef] [PubMed]
  24. S. Reichelt and H. Zappe, “Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing,” Appl. Opt. 44(27), 5786–5792 (2005).
    [CrossRef] [PubMed]
  25. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  26. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
    [CrossRef] [PubMed]
  27. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [CrossRef] [PubMed]
  28. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
    [CrossRef]
  29. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
    [CrossRef] [PubMed]
  30. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
    [CrossRef] [PubMed]
  31. R. Guo, B. Yao, P. Gao, J. Min, J. Han, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Parallel on-axis phase-shifting holographic phase microscopy based on reflective point-diffraction interferometer with long-term stability,” Appl. Opt. 52(15), 3484–3489 (2013).
    [CrossRef] [PubMed]
  32. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
    [CrossRef] [PubMed]
  33. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
    [CrossRef] [PubMed]
  34. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [CrossRef] [PubMed]
  35. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
    [CrossRef] [PubMed]
  36. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [CrossRef] [PubMed]
  37. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
    [CrossRef] [PubMed]
  38. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
    [CrossRef]
  39. V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009).
    [CrossRef]
  40. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
    [CrossRef] [PubMed]
  41. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [CrossRef] [PubMed]
  42. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
    [CrossRef] [PubMed]
  43. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).
    [CrossRef]

2014 (1)

2013 (2)

2012 (3)

2011 (2)

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[CrossRef] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (2)

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
[CrossRef] [PubMed]

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009).
[CrossRef]

2008 (2)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[CrossRef] [PubMed]

2007 (1)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[CrossRef]

2006 (4)

2005 (4)

2004 (1)

1999 (1)

1998 (1)

1996 (1)

1990 (1)

1971 (1)

T. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
[CrossRef]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

1966 (1)

1965 (1)

G. W. Stroke, “Lensless Fourier transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
[CrossRef]

1964 (1)

1963 (1)

1962 (1)

1952 (1)

G. L. Rogers, “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh A 63, 193–221 (1952).

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Alfieri, D.

Anand, A.

Badie, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

Badizadegan, K.

Bhaduri, B.

Bon, P.

Bursac, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

Charrière, F.

Chhaniwal, V.

Chim, S. S.

Choi, W.

Colomb, T.

Coppola, G.

Cuche, E.

Cui, X.

Dainty, J. C.

Dan, D.

Dasari, R. R.

De Nicola, S.

Depeursinge, C.

Dorn, A.

Dubois, F.

Edwards, C.

Emery, Y.

Fang-Yen, C.

Feld, M. S.

Ferraro, P.

Finizio, A.

Fu, D.

Gabor, D.

Gale, D. M.

Gao, P.

Garcia, J.

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009).
[CrossRef]

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[CrossRef] [PubMed]

García-Martínez, P.

Girshovitz, P.

Goddard, L. L.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Goss, W. P.

Grilli, S.

Guo, R.

Han, J.

Harder, I.

Huang, T.

T. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
[CrossRef]

Ikeda, T.

Iwai, H.

Javidi, B.

Joannes, L.

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[CrossRef] [PubMed]

Kim, M.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Kino, G. S.

Kuehn, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Legros, J.-C.

Lei, M.

Leitgeb, R. A.

Leith, E. N.

Lo, C. M.

Magistretti, P. J.

Mann, C.

Mantel, K.

Marian, A.

Marquet, P.

Maucort, G.

Merola, F.

Miccio, L.

Mico, V.

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[CrossRef] [PubMed]

Min, J.

Monneret, S.

Montfort, F.

Nercissian, V.

Nguyen, T. H.

Oh, S.

Paturzo, M.

Pether, M. I.

Pham, H.

Pierattini, G.

Popescu, G.

Rappaz, B.

Reichelt, S.

Ren, J.

Rogers, G. L.

G. L. Rogers, “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh A 63, 193–221 (1952).

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

Shaked, N. T.

Singh, A. S. G.

Striano, V.

Stroke, G. W.

G. W. Stroke, “Lensless Fourier transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
[CrossRef]

Tearney, G. J.

Upatnieks, J.

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[CrossRef] [PubMed]

Wattellier, B.

Wax, A.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
[CrossRef] [PubMed]

Yamaguchi, I.

Yamauchi, T.

Yan, S.

Yang, C.

Yang, Y.

Yao, B.

Yaqoob, Z.

Ye, T.

Yu, L.

Yu, X.

Zalevsky, Z.

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[CrossRef] [PubMed]

Zappe, H.

Zhang, T.

Zhou, R.

Zhu, Y.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (6)

Appl. Phys. Lett. (2)

G. W. Stroke, “Lensless Fourier transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

J. Biomed. Opt. (2)

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

J. Nanophoton. (1)

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (2)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (10)

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
[CrossRef] [PubMed]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
[CrossRef] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[CrossRef] [PubMed]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[CrossRef] [PubMed]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
[CrossRef] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
[CrossRef] [PubMed]

Proc. IEEE (1)

T. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
[CrossRef]

Proc. R. Soc. Edinburgh A (1)

G. L. Rogers, “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh A 63, 193–221 (1952).

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Other (3)

G. von Bally, Holography in Medicine and Biology (Springer, 1979).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, eds., Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Picture of the experimental layout (left) and scheme (right) of the proposed SMIM where the main components of the proposed SMIM can be identified at both the picture and the scheme.

Fig. 2
Fig. 2

Two proposed SMIM configurations where the input plane is divided into: (a) 3 regions and the CCD is centered on-axis, and (b) 2 regions and the CCD is laterally shifted from the optical axis.

Fig. 3
Fig. 3

Optical diagram and ray tracing scheme for the theoretical analysis of the proposed SMIM.

Fig. 4
Fig. 4

SMIM with a 5X/0.15NA objective lens and a USAF resolution target: (a) the hologram, (b) an averaged plot of the interferometric fringes included in the white rectangle of (a), (c) the Fourier transform of (a), and (d) recovered image.

Fig. 5
Fig. 5

Non-proper adjustment of the input plane spatial multiplexing in SMIM: (a) hologram, (b) Fourier transform of (a), and (c) retrieved image showing the overlapping of the replicas.

Fig. 6
Fig. 6

SMIM with a 10X/0.30NA (upper row) and 20X/0.46NA (lower row) objective lenses and a USAF resolution target: (a) and (d) the holograms, (b) and (e) the Fourier transforms of (a) and (d), and (c) and (f) the recovered images for 10X and 20X, respectively.

Fig. 7
Fig. 7

SMIM using a 10X/0.30NA objective and a swine sperm sample. (a)-(b) the recorded hologram and a magnified area of it, (c)-(d) the 2D retrieved unwrapped phase distribution and its 3D plot of the area marked with a solid line white rectangle in (c), and (e)-(f) the same as in (c)-(d) but after numerical propagation to focus at the plane where different sperm cells are contained. Lateral gray scale bars in (d) and (f) represents optical phase in radians.

Fig. 8
Fig. 8

SMIM using a 20X/0.46NA lens for RBCs and swine sperm cells: (a)-(b) are the recorded holograms, (c)-(d) are the retrieved phase distributions, and (e)-(f) are the 3D plots of the unwrapped phase distributions of the areas marked with a solid line white rectangle in (c)-(d), respectively. Lateral gray scale bar represents optical phase in radians.

Fig. 9
Fig. 9

(a) 2D and (b) 3D unwrapped phase distribution plots of a different group of sperm cells obtained with conventional DHM. Gray level scale represents optical phase in radians.

Tables (1)

Tables Icon

Table 1 SNR and STD analysis

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin θ 0 sin θ 0 =±Nλsin θ 0 =Nλ
sin θ 1 =sin θ 1 Nλ= z f 2 Nλ
r 1 z f 1 f 2 +Nλ f 1
r 2 z f 1 f 2 +Nλ f 1
y max = Nλ f 2 z M
h c,min =2z= f 2 tanθ ' min f 2 N min λ
N min 2z f 2 λ

Metrics