Abstract

We report on a mid-IR optical parametric oscillator (OPO)-based high resolution transient absorption spectrometer for state-resolved collisional energy transfer. Transient Doppler-broadened line profiles at λ = 3.3 μm are reported for HCl R7 transitions following gas-phase collisions with vibrationally excited pyrazine. The instrument noise, analyzed as a function of IR wavelength across the absorption line, is as much as 10 times smaller than in diode laser-based measurements. The reduced noise is attributed to larger intensity IR light that has greater intensity stability, which in turn leads to reduced detector noise and better frequency locking for the OPO.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high resolution spectroscopy,” Mol. Phys. 110(17), 2103–2109 (2012).
    [CrossRef]
  2. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
    [CrossRef] [PubMed]
  3. E. Andrieux, T. Zanon, M. Cadoret, A. Rihan, and J. J. Zondy, “500 GHz mode-hop-free idler tuning range with a frequency-stabilized singly resonant optical parametric oscillator,” Opt. Lett. 36(7), 1212–1214 (2011).
    [CrossRef] [PubMed]
  4. J. Courtois, R. Bouchendira, M. Cadoret, I. Ricciardi, S. Mosca, M. De Rosa, P. De Natale, and J.-J. Zondy, “High-speed multi-THz-range mode-hop-free tunable mid-IR laser spectrometer,” Opt. Lett. 38(11), 1972–1974 (2013).
    [CrossRef] [PubMed]
  5. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [CrossRef]
  6. P. Gross, M. E. Klein, T. Walde, K. J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 27(6), 418–420 (2002).
    [CrossRef] [PubMed]
  7. A. Henderson, R. Stafford, and J. H. Miller, “Continuous wave optical parametric oscillators break new spectral ground,” Spectroscopy 20, 16–18 (2005).
  8. A. Henderson, R. Stafford, and P. Hoffman, “High-power CW OPOs span the spectrum,” Laser Focus World 44, 65–69 (2008).
  9. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [CrossRef] [PubMed]
  10. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
    [CrossRef] [PubMed]
  11. P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
    [CrossRef]
  12. B. L. Yoder, R. Bisson, and R. D. Beck, “Steric effects in the chemisorption of vibrationally excited methane on Ni(100),” Science 329(5991), 553–556 (2010).
    [CrossRef] [PubMed]
  13. G. W. Flynn and R. E. Weston., “Hot atoms revisited: laser photolysis and product detection,” Annu. Rev. Phys. Chem. 37(1), 551–585 (1986).
    [CrossRef]
  14. D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88(6), 843–870 (1988).
    [CrossRef]
  15. P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Annu. Rev. Phys. Chem. 41(1), 91–122 (1990).
    [CrossRef]
  16. R. E. Weston and G. W. Flynn, “Relaxation of molecules with chemically significant amounts of vibrational energy: the dawn of the quantum state resolved era,” Annu. Rev. Phys. Chem. 43(1), 559–589 (1992).
    [CrossRef]
  17. P. B. Davies, “High resolution tunable infrared laser spectroscopy of transient molecules,” Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 89, 89–110 (1992).
    [CrossRef]
  18. M. S. Elioff, M. Fang, and A. S. Mullin, “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib~38500 cm−1). I. Collisions with water,” J. Chem. Phys. 115(15), 6990–7001 (2001).
    [CrossRef]
  19. E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
    [CrossRef] [PubMed]
  20. D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
    [CrossRef] [PubMed]
  21. J. V. V. Kasper, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Computer control of broadly tunable lasers: conversion of a color center laser into a high resolution laser spectrometer,” Appl. Opt. 21(2), 236–247 (1982).
    [CrossRef] [PubMed]
  22. H. K. Haugen, W. P. Hess, and S. R. Leone, “Application of semiconductor diode lasers to probe photodissociation dynamics,” AIP Conf. Proc. 160, 566–568 (1987).
    [CrossRef]
  23. I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
    [CrossRef]
  24. L. A. Pugh and K. N. Rao, “Intensities from Infrared Spectra,” in Molecular Spectroscopy, Modern Research: Volume II, K. N. Rao, ed. (Academic Press, 1976), pp. 165–227.
  25. P. Werle and F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30(4), 430–434 (1991).
    [CrossRef] [PubMed]
  26. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31(6), 718–731 (1992).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high resolution spectroscopy,” Mol. Phys. 110(17), 2103–2109 (2012).
[CrossRef]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (2)

2009 (1)

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

2008 (1)

A. Henderson, R. Stafford, and P. Hoffman, “High-power CW OPOs span the spectrum,” Laser Focus World 44, 65–69 (2008).

2007 (1)

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

2006 (1)

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Henderson, R. Stafford, and J. H. Miller, “Continuous wave optical parametric oscillators break new spectral ground,” Spectroscopy 20, 16–18 (2005).

2002 (1)

2001 (1)

M. S. Elioff, M. Fang, and A. S. Mullin, “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib~38500 cm−1). I. Collisions with water,” J. Chem. Phys. 115(15), 6990–7001 (2001).
[CrossRef]

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

1992 (3)

R. E. Weston and G. W. Flynn, “Relaxation of molecules with chemically significant amounts of vibrational energy: the dawn of the quantum state resolved era,” Annu. Rev. Phys. Chem. 43(1), 559–589 (1992).
[CrossRef]

P. B. Davies, “High resolution tunable infrared laser spectroscopy of transient molecules,” Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 89, 89–110 (1992).
[CrossRef]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31(6), 718–731 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Annu. Rev. Phys. Chem. 41(1), 91–122 (1990).
[CrossRef]

1988 (1)

D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88(6), 843–870 (1988).
[CrossRef]

1987 (1)

H. K. Haugen, W. P. Hess, and S. R. Leone, “Application of semiconductor diode lasers to probe photodissociation dynamics,” AIP Conf. Proc. 160, 566–568 (1987).
[CrossRef]

1986 (1)

G. W. Flynn and R. E. Weston., “Hot atoms revisited: laser photolysis and product detection,” Annu. Rev. Phys. Chem. 37(1), 551–585 (1986).
[CrossRef]

1983 (1)

I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
[CrossRef]

1982 (1)

Adler, F.

Andrieux, E.

Anzel, P.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Auerbach, M.

Beck, R. D.

B. L. Yoder, R. Bisson, and R. D. Beck, “Steric effects in the chemisorption of vibrationally excited methane on Ni(100),” Science 329(5991), 553–556 (2010).
[CrossRef] [PubMed]

Bennette, N.

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

Bernath, P. F.

P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Annu. Rev. Phys. Chem. 41(1), 91–122 (1990).
[CrossRef]

Bisson, R.

B. L. Yoder, R. Bisson, and R. D. Beck, “Steric effects in the chemisorption of vibrationally excited methane on Ni(100),” Science 329(5991), 553–556 (2010).
[CrossRef] [PubMed]

Boller, K. J.

Bomse, D. S.

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

Bouchendira, R.

Briles, T. C.

Cadoret, M.

Cossel, K. C.

Courtois, J.

Curl, R. F.

Davies, P. B.

P. B. Davies, “High resolution tunable infrared laser spectroscopy of transient molecules,” Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 89, 89–110 (1992).
[CrossRef]

de Escobar, Y. N. M.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

De Natale, P.

De Rosa, M.

De Tommasi, E.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high resolution spectroscopy,” Mol. Phys. 110(17), 2103–2109 (2012).
[CrossRef]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

DeSalvo, B. J.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Elioff, M.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

Elioff, M. S.

M. S. Elioff, M. Fang, and A. S. Mullin, “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib~38500 cm−1). I. Collisions with water,” J. Chem. Phys. 115(15), 6990–7001 (2001).
[CrossRef]

Fallnich, C.

Fang, M.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

M. S. Elioff, M. Fang, and A. S. Mullin, “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib~38500 cm−1). I. Collisions with water,” J. Chem. Phys. 115(15), 6990–7001 (2001).
[CrossRef]

Flynn, G. W.

R. E. Weston and G. W. Flynn, “Relaxation of molecules with chemically significant amounts of vibrational energy: the dawn of the quantum state resolved era,” Annu. Rev. Phys. Chem. 43(1), 559–589 (1992).
[CrossRef]

G. W. Flynn and R. E. Weston., “Hot atoms revisited: laser photolysis and product detection,” Annu. Rev. Phys. Chem. 37(1), 551–585 (1986).
[CrossRef]

Foltynowicz, A.

Gross, P.

Halonen, L.

Hartl, I.

Haugen, H. K.

H. K. Haugen, W. P. Hess, and S. R. Leone, “Application of semiconductor diode lasers to probe photodissociation dynamics,” AIP Conf. Proc. 160, 566–568 (1987).
[CrossRef]

Havey, D. K.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

Hayes, M.

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

Henderson, A.

A. Henderson, R. Stafford, and P. Hoffman, “High-power CW OPOs span the spectrum,” Laser Focus World 44, 65–69 (2008).

A. Henderson, R. Stafford, and J. H. Miller, “Continuous wave optical parametric oscillators break new spectral ground,” Spectroscopy 20, 16–18 (2005).

Hess, W. P.

H. K. Haugen, W. P. Hess, and S. R. Leone, “Application of semiconductor diode lasers to probe photodissociation dynamics,” AIP Conf. Proc. 160, 566–568 (1987).
[CrossRef]

Hoffman, P.

A. Henderson, R. Stafford, and P. Hoffman, “High-power CW OPOs span the spectrum,” Laser Focus World 44, 65–69 (2008).

Kasper, J. V. V.

Killian, T. C.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Klein, M. E.

Leone, S. R.

H. K. Haugen, W. P. Hess, and S. R. Leone, “Application of semiconductor diode lasers to probe photodissociation dynamics,” AIP Conf. Proc. 160, 566–568 (1987).
[CrossRef]

Li, Z.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

Liu, Q.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high resolution spectroscopy,” Mol. Phys. 110(17), 2103–2109 (2012).
[CrossRef]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

Maslowski, P.

Merimaa, M.

Mickelson, P. G.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Miller, E. M.

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

Miller, J. H.

A. Henderson, R. Stafford, and J. H. Miller, “Continuous wave optical parametric oscillators break new spectral ground,” Spectroscopy 20, 16–18 (2005).

Mosca, S.

Mullin, A. S.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

M. S. Elioff, M. Fang, and A. S. Mullin, “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib~38500 cm−1). I. Collisions with water,” J. Chem. Phys. 115(15), 6990–7001 (2001).
[CrossRef]

Murao, T.

I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
[CrossRef]

Murat, L.

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

Nagel, S. B.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Nesbitt, D. J.

D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88(6), 843–870 (1988).
[CrossRef]

Neudel, J.

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

Pollock, C. R.

Ricciardi, I.

Rihan, A.

Rocco, A.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high resolution spectroscopy,” Mol. Phys. 110(17), 2103–2109 (2012).
[CrossRef]

Silver, J. A.

Slemr, F.

Stafford, R.

A. Henderson, R. Stafford, and P. Hoffman, “High-power CW OPOs span the spectrum,” Laser Focus World 44, 65–69 (2008).

A. Henderson, R. Stafford, and J. H. Miller, “Continuous wave optical parametric oscillators break new spectral ground,” Spectroscopy 20, 16–18 (2005).

Stanton, A. C.

Tittel, F. K.

Traverso, A. J.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Vainio, M.

Walde, T.

Werle, P.

Wessels, P.

Weston, R. E.

R. E. Weston and G. W. Flynn, “Relaxation of molecules with chemically significant amounts of vibrational energy: the dawn of the quantum state resolved era,” Annu. Rev. Phys. Chem. 43(1), 559–589 (1992).
[CrossRef]

G. W. Flynn and R. E. Weston., “Hot atoms revisited: laser photolysis and product detection,” Annu. Rev. Phys. Chem. 37(1), 551–585 (1986).
[CrossRef]

Yamanaka, T.

I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
[CrossRef]

Yamazaki, I.

I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
[CrossRef]

Yan, M.

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

Ye, J.

Yoder, B. L.

B. L. Yoder, R. Bisson, and R. D. Beck, “Steric effects in the chemisorption of vibrationally excited methane on Ni(100),” Science 329(5991), 553–556 (2010).
[CrossRef] [PubMed]

Yoshihara, K.

I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
[CrossRef]

Zanon, T.

Zondy, J. J.

Zondy, J.-J.

AIP Conf. Proc. (1)

H. K. Haugen, W. P. Hess, and S. R. Leone, “Application of semiconductor diode lasers to probe photodissociation dynamics,” AIP Conf. Proc. 160, 566–568 (1987).
[CrossRef]

Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. (1)

P. B. Davies, “High resolution tunable infrared laser spectroscopy of transient molecules,” Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 89, 89–110 (1992).
[CrossRef]

Annu. Rev. Phys. Chem. (3)

G. W. Flynn and R. E. Weston., “Hot atoms revisited: laser photolysis and product detection,” Annu. Rev. Phys. Chem. 37(1), 551–585 (1986).
[CrossRef]

P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Annu. Rev. Phys. Chem. 41(1), 91–122 (1990).
[CrossRef]

R. E. Weston and G. W. Flynn, “Relaxation of molecules with chemically significant amounts of vibrational energy: the dawn of the quantum state resolved era,” Annu. Rev. Phys. Chem. 43(1), 559–589 (1992).
[CrossRef]

Appl. Opt. (3)

Chem. Rev. (1)

D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88(6), 843–870 (1988).
[CrossRef]

Faraday Discuss. Chem. Soc. (1)

I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, “Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine, and pyrimidine,” Faraday Discuss. Chem. Soc. 30, 395–405 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[CrossRef]

J. Chem. Phys. (1)

M. S. Elioff, M. Fang, and A. S. Mullin, “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib~38500 cm−1). I. Collisions with water,” J. Chem. Phys. 115(15), 6990–7001 (2001).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

P. G. Mickelson, Y. N. M. de Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition,” J. Phys. At. Mol. Opt. Phys. 42(23), 235001 (2009).
[CrossRef]

J. Phys. Chem. A (2)

E. M. Miller, L. Murat, N. Bennette, M. Hayes, and A. S. Mullin, “Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions,” J. Phys. Chem. A 110(9), 3266–3272 (2006).
[CrossRef] [PubMed]

D. K. Havey, Q. Liu, Z. Li, M. Elioff, M. Fang, J. Neudel, and A. S. Mullin, “Direct determination of collision rates beyond the Lennard-Jones model through state-resolved measurements of strong and weak collisions,” J. Phys. Chem. A 111(13), 2458–2460 (2007).
[CrossRef] [PubMed]

Laser Focus World (1)

A. Henderson, R. Stafford, and P. Hoffman, “High-power CW OPOs span the spectrum,” Laser Focus World 44, 65–69 (2008).

Mol. Phys. (1)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high resolution spectroscopy,” Mol. Phys. 110(17), 2103–2109 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Science (1)

B. L. Yoder, R. Bisson, and R. D. Beck, “Steric effects in the chemisorption of vibrationally excited methane on Ni(100),” Science 329(5991), 553–556 (2010).
[CrossRef] [PubMed]

Spectroscopy (1)

A. Henderson, R. Stafford, and J. H. Miller, “Continuous wave optical parametric oscillators break new spectral ground,” Spectroscopy 20, 16–18 (2005).

Other (1)

L. A. Pugh and K. N. Rao, “Intensities from Infrared Spectra,” in Molecular Spectroscopy, Modern Research: Volume II, K. N. Rao, ed. (Academic Press, 1976), pp. 165–227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Overview of schemes for modulation and phase-sensitive detection of (a) the mid-IR OPO and (b) the lead-salt diode laser as part of a mid-IR transient IR absorption spectrometer.

Fig. 2
Fig. 2

Schematic diagram of a transient IR absorption spectrometer that use a frequency-locked mid-IR OPO to investigate molecular energy transfer.

Fig. 3
Fig. 3

Transient absorption and kinetic fitting for the HCl R7 transition following collisions with vibrationally hot pyrazine collected with (a) the OPO-based spectrometer and (b) the diode laser spectrometer. The rms noise from the residuals is shown in lower plots.

Fig. 4
Fig. 4

Doppler-broadened transient absorption line profiles collected at t = 1 μs for the HCl R7 transition measured with the a) OPO and b) diode laser spectrometers. Each data set is fit with Gaussian function. The OPO data have smaller residuals.

Fig. 5
Fig. 5

IR power dependence of rms noise for transient absorption of HCl R7. The noise with the OPO detuned from transition center (blue circles) decreases linearly with increasing IR power. A measurement at line center (blue triangle) is consistent with the noise for the detuned light, showing a high degree of wavelength stability. In contrast, the noise for the diode laser spectrometer is a factor of 3 larger for detuned IR and a factor of 5 larger at line center than for comparable OPO power.

Fig. 6
Fig. 6

Noise at (a) baseline and (b) line center of HCl R7 with the OPO and diode laser spectrometers. Rms noise values are listed in parentheses. (c) The wavelength dependence of rms noise for the R7 line profile measured with the OPO (red circles) and the diode laser (grey squares). The Gaussian profile from Fig. 4 is shown for reference (intensity is not to scale). The noise amplitude for the diode spectrometer is larger than that of the OPO spectrometer and shows much more scatter across the line profile.

Fig. 7
Fig. 7

The power spectrum of the transient noise at (a) baseline and (b) line center of the HCl R7 transition for the OPO and diode laser spectrometers. The noise amplitude decreases with increasing frequency for both IR sources. The diode-based noise has greater amplitude than the OPO system and increases at line center.

Fig. 8
Fig. 8

Doppler-broadened transient absorption line profiles for the HCl R4 transition collected with the (a) OPO and (b) diode laser spectrometers. The OPO-based instrument has sufficient stability and frequency resolution to reveal the double Gaussian nature of the line profile. These features are obscured by noise in the diode-based instrument.

Metrics