Abstract

Polarization-diversity couplers are low-cost industrially-scalable passive devices that can couple light of unknown polarization from a telecom fiber-mode to a pair of TE-polarized wave-guided modes in the Silicon-on-Insulator platform. These couplers offer significantly more relaxed alignment tolerances than edge-coupling schemes, which is advantageous for commercial fiber-packaging of Si-photonic circuits. However, until now, polarization-diversity couplers have not offered sufficient coupling efficiency to motivate serious commercial consideration. Using 3D finite difference time domain calculations for device optimization, we identify Silicon-on-Insulator polarization-diversity couplers with 1550nm coupling efficiencies of −0.95dB and −1.9dB, for designs with and without bottom-reflector elements, respectively. These designs offer a significant improvement over state-of-the-art performance, and effectively bridge the “performance gap” between polarization-diversity couplers and 1D-grating couplers. Our best polarization-diversity coupler design goes beyond the −1dB efficiency limit that is typically accepted as the minimum needed for industrial adoption of coupler devices in the telecoms market.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics

Lee Carroll, Dario Gerace, Ilaria Cristiani, Sylvie Menezo, and Lucio C. Andreani
Opt. Express 21(18) 21556-21568 (2013)

Optimising apodized grating couplers in a pure SOI platform to −0.5 dB coupling efficiency

Angelo Bozzola, Lee Carroll, Dario Gerace, Ilaria Cristiani, and Lucio Claudio Andreani
Opt. Express 23(12) 16289-16304 (2015)

Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler

Wesley D. Sacher, Ying Huang, Liang Ding, Benjamin J. F. Taylor, Hasitha Jayatilleka, Guo-Qiang Lo, and Joyce K. S. Poon
Opt. Express 22(9) 10938-10947 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
    [Crossref]
  2. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
    [Crossref]
  3. C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
    [Crossref]
  4. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
    [Crossref] [PubMed]
  5. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  6. W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
    [Crossref]
  7. B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. Fedeli, and B. Ben Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw. 4(9), A29–A37 (2012).
    [Crossref]
  8. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [Crossref] [PubMed]
  9. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  10. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, and G. Roelkens, “High-efficiency silicon-on-insulator fiber-to-chip grating couplers using a silicon overlay,” Group IV photonics, United States, FPd1 (2009).
  11. C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  12. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
    [Crossref] [PubMed]
  13. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
    [Crossref]
  14. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  15. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
    [Crossref]
  16. L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(18), 21556–21568 (2013).
    [Crossref] [PubMed]
  17. F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
    [Crossref]
  18. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [Crossref]
  19. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator Platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  20. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
    [Crossref] [PubMed]
  21. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly Efficient Grating Coupler between Optical Fiber and Silicon Photonic Circuit,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America), OSA Technical Digest, CTuC6 (2009).
    [Crossref]
  22. M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).
  23. L. C. Andreani and D. Gerace, “Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
    [Crossref]

2014 (1)

2013 (3)

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(18), 21556–21568 (2013).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

2012 (3)

2011 (3)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

2010 (2)

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator Platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

2007 (1)

2006 (3)

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

L. C. Andreani and D. Gerace, “Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2004 (1)

2003 (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Absil, P.

Andreani, L. C.

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(18), 21556–21568 (2013).
[Crossref] [PubMed]

L. C. Andreani and D. Gerace, “Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Baets, R.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Bakir, B.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Barwicz, T.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Beckx, S.

Ben Bakir, B.

Bernabé, S.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Berroth, M.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator Platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Burghartz, J.

Butschke, J.

Carroll, L.

Chao Li, L.

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Charbonnier, B.

Chen, X.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Cristiani, I.

Dahlem, M. S.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Dumon, P.

Fedeli, J.

Fedeli, J.-M.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Fung, C. K. Y.

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Gan, F.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Gerace, D.

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(18), 21556–21568 (2013).
[Crossref] [PubMed]

L. C. Andreani and D. Gerace, “Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Guo-Qiang, P. L.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Guo-Qiang Lo, P.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Holzwarth, C. W.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Ippen, E. P.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Kopp, C.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Krauss, T. F.

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

Krtner, F. X.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Kunze, A.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Lebreton, A.

Lepage, G.

Letzkus, F.

Lim, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Lo, S. M. G.

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Luyssaert, B.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Menezo, S.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

O’Brien, P.

Orobtchouk, R.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Pathak, S.

Pinguet, T.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Pluk, E.

Popovic, M.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Porte, H.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Prather, D.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Rakich, P. T.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Roelkens, G.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Schrank, F.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Selvaraja, S.

Smith, H. I.

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Stomeo, T.

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Taillaert, D.

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Tekin, T.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Tsang, H. K.

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Van Campenhout, J.

Van Laere, F.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator Platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

Vanslembrouck, M.

Verheyen, P.

Vermeulen, D.

Vogel, W.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Wiaux, V.

Xia, C.

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Zaoui, W. S.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Zimmermann, L.

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Kopp, S. Bernabé, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

C. Xia, L. Chao Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20(4), 318–320 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Nat. Photonics (1)

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Opt. Express (7)

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator Platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(18), 21556–21568 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Photon. News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[Crossref]

Phys. Rev. B (1)

L. C. Andreani and D. Gerace, “Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

Other (3)

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, and G. Roelkens, “High-efficiency silicon-on-insulator fiber-to-chip grating couplers using a silicon overlay,” Group IV photonics, United States, FPd1 (2009).

S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly Efficient Grating Coupler between Optical Fiber and Silicon Photonic Circuit,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America), OSA Technical Digest, CTuC6 (2009).
[Crossref]

M. Popovic, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Krtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” 33rd European Conference and Exhibition of Optical Communication (ECOC), 1–2 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of a polarization diversity coupler (PDC) realized in a SOI wafer. The Si-layer is separated from the Si-substrate (SUB) by a bottom-oxide layer (BOX). The hole-radius (R) and grating-pitch (P) of the photonic crystal array (PCA) etched into the Si-layer are shown in the inset. The near-normally incident fibre-mode is projected onto the photonic crystal array of the coupler with an angle-of-incidence of θ, and the polarization angle of the fibre-mode is given by φ. Light is coupled into the two taper-waveguide arms with coupling efficiencies of CEX and CEY, that depend on the SOI-PDC design parameters, and the polarization angle. (b) A representative set of the best coupling efficiency of different SOI grating coupler designs over the last decade. The numbers in square brackets are the relevant reference. The improvements in 1D-GC performance have come from improved designs that exploit thicker Si-layers and/or bottom-reflector elements, and apodization. The “performance gap” between the best 1D-GCs and PDCs was 4dB in 2009. 3D-FDTD optimization of SOI-PDCs closes this gap < 0.5dB.
Fig. 2
Fig. 2 The coupling efficiency spectra of 3D-FDTD globally optimized PDC designs identified in this work. (a) Coupling spectra of an initial “standard” SOI-PDC design with S = 220nm and E = 70nm (PDC-a = [4]) and after 3D-FDTD optimization (PDC-b = [16]) to identify the optimum etch-depth. The performance gain from 3D-FDTD optimization in 220nm SOI is 1dB. (b) A further 1dB increase in performance is identified for designs with S≈400nm. (c) Yet another 1dB increase in performance is achieved by introducing a metallic bottom-reflector (BR) in the SOI-PDC design. In total, 3D-FDTD optimization of SOI-PDC design brings a total performance boost of 3dB over existing, non-optimized designs, and enables SOI-PDCs to reach the 1dB coupling threshold for the first time. In all cases, the 1dB bandwidth of the SOI-PDCs is ≈40nm, which is sufficient for most multiplexed telecom applications.
Fig. 3
Fig. 3 (a) The coupling efficiency of 6517 SOI 1D-GC designs, each with a unique combination of Si-layer thickness, BOX thickness, etch-depth, and duty-cycle, as calculated by 2D-FDTD simulations. Each coupler is centred on λP = 1550 ± 2nm by tuning the pitch. Promising combinations of design parameters identified by this 2D-FDTD sweep are used as starting values for 3D-FDTD simulations of the corresponding SOI-PDCs. The coupling efficiencies of the 3D-FDTD optimized SOI-PDC designs with S = 220nm, 320nm, 400nm, 420nm, and 520nm are indicated by red rectangles, where the height of the rectangles indicates the polarization dependent loss of the design. The performance gap between the best 1D-GC designs and optimized PDC designs is < 0.5dB. (b) The coupling efficiency contour plot of 20 unique SOI-PDC designs, all with S = 400nm and B = 1900nm. The peak of this contour plot corresponds to the globally optimized SOI-PDC design without bottom-reflector, where the optimum combination of E/S = 291nm/400nm and R/P = 167nm/584nm gives a coupling efficiency of −1.9dB = 65%.
Fig. 4
Fig. 4 (a) The coupling efficiency of 4704 SOI 1D-GC designs with bottom-reflector, each with a unique combination of Si-layer thickness, BOX thickness, etch-depth, and duty-cycle, as calculated by 2D-FDTD simulations, all tuned to λP = 1550nm. The coupling efficiencies of the 3D-FDTD optimized SOI-PDC designs with bottom-reflectors for S = 160nm, 180nm, and 220nm are indicated by the red rectangles, where the height of the rectangle corresponds to the gives the polarization dependent loss. The performance gap between 1D-GCs and optimized PDCs is < 0.5dB (b) The coupling efficiency contour plot of 25 SOI-PDC designs with bottom-reflector, all with S = 160nm and B = 2175nm. The optimum combination of E/S = 80nm/160nm and R/P = 209nm/696nm gives a coupling efficiency of −0.95dB = 80%. (c) A schematic of the CMOS-compatible approach to apply a bottom-reflector element to a SOI-PDC, as described in [6].
Fig. 5
Fig. 5 The variation of total coupling efficiency (CET) from the optimized SOI-PDC designs, as a function of fibre-mode polarization angle, as determined by polarization-resolved 3D-FDTD simulations. The polarization dependent loss (PDL) for both designs is 0.3dB. The mean coupling efficiencies of the designs with and without bottom-reflector are −0.95dB and −1.9dB, respectively. These values corresponds almost exactly to corresponding values of CET(φ = 45°) used as the performance metric during the 3D-FDTD optimization.
Fig. 6
Fig. 6 (a) The effect of fibre alignment on CET and PDL for the SOI-PDC design with bottom-reflector design, for a fibre-scan along the symmetry axis of the PDC. The green spot indicates the “sweet spot” of optimum alignment that gives the maximum coupling efficiency of −0.95dB. The mean CET has a 1dB alignment tolerance of 3.6µm, and a PDL that is only weakly affected by the fibre-alignment. (b) The effect of fibre alignment on CET and PDL for a fibre-scan orthogonal to the symmetry axis of the PDC. The mean CET has a 1dB alignment tolerance of 3.9µm, and a PDL that depends sensitively on fibre-position, increases to −1.1dB for an alignment tolerance of ± 2µm.
Fig. 7
Fig. 7 (a) and (b) The variation of CEX and CEY as a function of the fibre-mode polarization angle of the 3D-FDTD optimized SOI-PDC designs, with and without the bottom-reflector, respectively. The data-points are determined from a series of polarization-resolved 3D-FDTD calculations, and the solid lines are least-square fits based on the results of guided mode expansion calculations and the symmetry of the fibre-mode projection. The inset in (b) shows the coordinates of the reciprocal lattice of the photonic crystal array used in the GME calculations. (c) and (d) The photonic mode dispersion of the (infinitely extended) photonic crystal array in the 3D-FDTD optimized S = 160nm and S = 400nm PDC designs, respectively. The heavy lines indicate dipole-active photonic modes. The heavy blue/purple lines identify the TE/TM-polarization of the modes with respect to the internal geometry of the GME calculation. The almost vertical red line is the “light-line” of the fibre-mode - where it intersects a dipole-active mode, the SOI-PDC has a coupling resonance. The S = 160nm design has a single resonance near λP = 1550nm = 0.8eV with a TE-mode, while the S = 400nm design has two, with both a TE-mode and TM-mode. The presence of these different modes at the target wavelength of the coupler explains the different polarization dependence of CEX and CEY observed for the two SOI-PDC designs in (a) and (b).

Tables (1)

Tables Icon

Table 1 Summary of design parameters for globally optimized SOI-PDC designs

Metrics