Abstract

Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response and scattering-free infrared liquid crystal phase modulators

Jie Sun, Yuan Chen, and Shin-Tson Wu
Opt. Express 20(18) 20124-20129 (2012)

Hysteresis-free and submillisecond-response polymer network liquid crystal

Yun-Han Lee, Fangwang Gou, Fenglin Peng, and Shin-Tson Wu
Opt. Express 24(13) 14793-14800 (2016)

Low voltage polymer network liquid crystal for infrared spatial light modulators

Fenglin Peng, Daming Xu, Haiwei Chen, and Shin-Tson Wu
Opt. Express 23(3) 2361-2368 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. D. Tholl, “Novel laser beam steering techniques,” Proc. SPIE 6397, 639708 (2006).
    [Crossref]
  2. J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
    [Crossref]
  3. B. Duncan, P. J. Bos, and V. Sergan, “Wide angle achromatic prism beam steering for infrared countermeasure application,” Opt. Eng. 42(4), 1038–1047 (2003).
    [Crossref]
  4. H. Hu, L. Hu, Z. H. Peng, Q. Q. Mu, X. Y. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37(16), 3324–3326 (2012).
    [Crossref] [PubMed]
  5. G. D. Love, A. K. Kirby, and R. A. Ramsey, “Sub-millisecond, high stroke phase modulation using polymer network liquid crystals,” Opt. Express 18(7), 7384–7389 (2010).
    [Crossref] [PubMed]
  6. J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
    [Crossref]
  7. D. Engström, M. J. O’Callaghan, C. Walker, and M. A. Handschy, “Fast beam steering with a ferroelectric-liquid-crystal optical phased array,” Appl. Opt. 48(9), 1721–1726 (2009).
    [Crossref] [PubMed]
  8. D. Coleman, D. Mueller, and N. A. Clark, “Control of molecular orientation in electrostatically stabilized FLC,” Phys. Rev. Lett. 91(17), 175505 (2003).
    [Crossref] [PubMed]
  9. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  10. K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
    [Crossref]
  11. J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
    [Crossref] [PubMed]
  12. Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
    [Crossref]
  13. I. Dierking, “Recent developments in polymer stabilized liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
    [Crossref]
  14. C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Morphology of polymer stabilized liquid crystals,” Chem. Mater. 7(12), 2300–2308 (1995).
    [Crossref]
  15. Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
    [Crossref]
  16. I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
    [Crossref]
  17. A. S. Sonin and N. A. Churochkina, “Liquid crystals stabilized by polymer networks,” Polym. Sci. Ser. A 52(5), 463–482 (2010).
    [Crossref]
  18. I. Dierking, “Polymer network stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
    [Crossref]
  19. C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effects of polymerization temperature on the morphology and electrooptic properties of polymer stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
    [Crossref]
  20. R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
    [Crossref] [PubMed]

2012 (2)

2011 (2)

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
[Crossref]

2010 (4)

I. Dierking, “Recent developments in polymer stabilized liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
[Crossref]

A. S. Sonin and N. A. Churochkina, “Liquid crystals stabilized by polymer networks,” Polym. Sci. Ser. A 52(5), 463–482 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
[Crossref]

G. D. Love, A. K. Kirby, and R. A. Ramsey, “Sub-millisecond, high stroke phase modulation using polymer network liquid crystals,” Opt. Express 18(7), 7384–7389 (2010).
[Crossref] [PubMed]

2009 (2)

D. Engström, M. J. O’Callaghan, C. Walker, and M. A. Handschy, “Fast beam steering with a ferroelectric-liquid-crystal optical phased array,” Appl. Opt. 48(9), 1721–1726 (2009).
[Crossref] [PubMed]

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

2006 (1)

H. D. Tholl, “Novel laser beam steering techniques,” Proc. SPIE 6397, 639708 (2006).
[Crossref]

2004 (1)

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

2003 (2)

B. Duncan, P. J. Bos, and V. Sergan, “Wide angle achromatic prism beam steering for infrared countermeasure application,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

D. Coleman, D. Mueller, and N. A. Clark, “Control of molecular orientation in electrostatically stabilized FLC,” Phys. Rev. Lett. 91(17), 175505 (2003).
[Crossref] [PubMed]

2002 (1)

J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
[Crossref]

2000 (2)

I. Dierking, “Polymer network stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

1997 (1)

I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

1996 (1)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effects of polymerization temperature on the morphology and electrooptic properties of polymer stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

1995 (1)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Morphology of polymer stabilized liquid crystals,” Chem. Mater. 7(12), 2300–2308 (1995).
[Crossref]

Afzali, A.

I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Bos, P. J.

B. Duncan, P. J. Bos, and V. Sergan, “Wide angle achromatic prism beam steering for infrared countermeasure application,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
[Crossref]

Cao, H.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Cao, M.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Chen, K. M.

K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
[Crossref]

Chen, Y.

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
[Crossref]

Chien, L. C.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effects of polymerization temperature on the morphology and electrooptic properties of polymer stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Morphology of polymer stabilized liquid crystals,” Chem. Mater. 7(12), 2300–2308 (1995).
[Crossref]

Churochkina, N. A.

A. S. Sonin and N. A. Churochkina, “Liquid crystals stabilized by polymer networks,” Polym. Sci. Ser. A 52(5), 463–482 (2010).
[Crossref]

Clark, N. A.

D. Coleman, D. Mueller, and N. A. Clark, “Control of molecular orientation in electrostatically stabilized FLC,” Phys. Rev. Lett. 91(17), 175505 (2003).
[Crossref] [PubMed]

Coleman, D.

D. Coleman, D. Mueller, and N. A. Clark, “Control of molecular orientation in electrostatically stabilized FLC,” Phys. Rev. Lett. 91(17), 175505 (2003).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, “Recent developments in polymer stabilized liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
[Crossref]

I. Dierking, “Polymer network stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Duncan, B.

B. Duncan, P. J. Bos, and V. Sergan, “Wide angle achromatic prism beam steering for infrared countermeasure application,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
[Crossref]

Engström, D.

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Gauza, S.

K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
[Crossref]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Gibson, J.

J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
[Crossref]

Guo, J. B.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Handschy, M. A.

He, S. M.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Hu, H.

Hu, L.

Huang, H.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Hudson, S. D.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effects of polymerization temperature on the morphology and electrooptic properties of polymer stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Morphology of polymer stabilized liquid crystals,” Chem. Mater. 7(12), 2300–2308 (1995).
[Crossref]

Kirby, A. K.

Kosbar, L. L.

I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Li, B. F.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Li, W.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Li, Y.

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Liu, C.

Love, G. D.

Lowe, A. C.

I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Ma, R. Q.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Mu, Q. Q.

Mueller, D.

D. Coleman, D. Mueller, and N. A. Clark, “Control of molecular orientation in electrostatically stabilized FLC,” Phys. Rev. Lett. 91(17), 175505 (2003).
[Crossref] [PubMed]

O’Callaghan, M. J.

Ouyang, C. B.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Peng, Z. H.

Rajaram, C. V.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effects of polymerization temperature on the morphology and electrooptic properties of polymer stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Morphology of polymer stabilized liquid crystals,” Chem. Mater. 7(12), 2300–2308 (1995).
[Crossref]

Ramsey, R. A.

Ren, H. W.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Sergan, V.

B. Duncan, P. J. Bos, and V. Sergan, “Wide angle achromatic prism beam steering for infrared countermeasure application,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Sergen, V.

J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
[Crossref]

Sonin, A. S.

A. S. Sonin and N. A. Churochkina, “Liquid crystals stabilized by polymer networks,” Polym. Sci. Ser. A 52(5), 463–482 (2010).
[Crossref]

Sun, J.

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
[Crossref]

Tholl, H. D.

H. D. Tholl, “Novel laser beam steering techniques,” Proc. SPIE 6397, 639708 (2006).
[Crossref]

Walker, C.

Wu, S. T.

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
[Crossref]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Wu, S.-T.

J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
[Crossref]

Xianyu, H. Q.

J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
[Crossref]

K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
[Crossref]

Xuan, L.

Yan, J.

Yang, D. K.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Yang, H.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Yin, Y. H.

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Zhang, X. Y.

Adv. Mater. (1)

I. Dierking, “Polymer network stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Sun, H. Q. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond response polymer network liquid crystal phase modulators at 1064nm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
[Crossref]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

I. Dierking, L. L. Kosbar, A. Afzali, and A. C. Lowe, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Chem. Mater. (2)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Morphology of polymer stabilized liquid crystals,” Chem. Mater. 7(12), 2300–2308 (1995).
[Crossref]

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effects of polymerization temperature on the morphology and electrooptic properties of polymer stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Displ. Tech. Lett. (1)

K. M. Chen, S. Gauza, H. Q. Xianyu, and S. T. Wu, “Submillisecond gray level response time of a polymer stabilized blue phase liquid crystal,” Displ. Tech. Lett. 6(2), 49–51 (2010).
[Crossref]

J. Appl. Polym. Sci. (1)

Y. H. Yin, W. Li, H. Cao, J. B. Guo, B. F. Li, S. M. He, C. B. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse mode polymer stabilized cholesteric texture,” J. Appl. Polym. Sci. 111(3), 1353–1357 (2009).
[Crossref]

Opt. Eng. (1)

B. Duncan, P. J. Bos, and V. Sergan, “Wide angle achromatic prism beam steering for infrared countermeasure application,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Coleman, D. Mueller, and N. A. Clark, “Control of molecular orientation in electrostatically stabilized FLC,” Phys. Rev. Lett. 91(17), 175505 (2003).
[Crossref] [PubMed]

Polym. Chem. (1)

I. Dierking, “Recent developments in polymer stabilized liquid crystals,” Polym. Chem. 1(8), 1153–1159 (2010).
[Crossref]

Polym. Sci. Ser. A (1)

A. S. Sonin and N. A. Churochkina, “Liquid crystals stabilized by polymer networks,” Polym. Sci. Ser. A 52(5), 463–482 (2010).
[Crossref]

Proc. SPIE (2)

H. D. Tholl, “Novel laser beam steering techniques,” Proc. SPIE 6397, 639708 (2006).
[Crossref]

J. Gibson, B. Duncan, P. J. Bos, and V. Sergen, “Wide angle beam steering for infrared countermeasures application,” Proc. SPIE 4723, 100–111 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The maximum light scattering when signal voltage was loaded on PNLC cell under different polymerization temperature conditions, which was expressed by the transmission spectra of non-scattered white light
Fig. 2
Fig. 2 The polymer network morphology of different PNLC phase modulator under different polymerization temperature, (a) 293K; (b) 313K; (c) 323K
Fig. 3
Fig. 3 The light scattering of PNLC phase modulators under different UV curing intensity, (a) light scattering dispersion related transmission; (b) light scattering at 1.06μm under different UV curing intensity
Fig. 4
Fig. 4 The polymer network morphology of PNLC phase modulators which were polymerized under different UV curing intensity, (a) 350mW/cm2; (b) 168mW/cm2; (c) 128mW/cm2; (d) 78mW/cm2; (e) 58mW/cm2; (f) 25mW/cm2
Fig. 5
Fig. 5 The Transmission spectra of PNLC phase modulators under different polymerization time, namely transmission spectra of sample DTime-20 and DTime-60
Fig. 6
Fig. 6 The polymer network morphology of PNLC phase modulator under different polymerization time, (a) 20min, sample DTime-20; (b) 60min, sample DTime-60
Fig. 7
Fig. 7 The optical phase delay at 1064nm dependence on the applied voltage in samples with different curing intensity
Fig. 8
Fig. 8 The dynamic response of on state π and 2π phase change in PNLC phase modulator which was polymerized under 283K and 350mW/cm2 for 60min. (a) dynamic response of on state π phase change; (b) dynamic response of on state 2π phase change; (c) dynamic response of on state 2π phase change in on the time scale of 2 seconds, in which the blue line was the envelop of the dynamic response process which excluded the influence of phase ripple; (d) origin verification for the phase ripple occurrence in Fig. 8(c).
Fig. 9
Fig. 9 Dynamic response of PNLC phase modulators under different polymerization conditions, (a) influence of polymerization temperature; (b) influence of UV curing intensity; (c) influence of polymerization time

Tables (2)

Tables Icon

Table 1 The prepared PNLC samples under different polymerization temperature, time and UV intensity

Tables Icon

Table 2 The threshold voltage and response time of fast process when 2π on state was activated in different sample, namely their dependence on the polymer network morphology

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ s ~ ( δ n e f f ) 2 D / λ 0
d b ~ ( k T / γ R X ) 1 / 3 ( ϕ ) 2 / 9

Metrics