Abstract

We present a method to calibrate the light to heat conversion in an aqueous fluid containing nanoparticles. Accurate control of light and heat is of dramatic importance in many fields of science and metal nanoparticles have acquired an increased importance as means to address heat in very small areas when irradiated with an intense light. The proposed method enables to measure the temperature in the environment surrounding nanoparticles, as a function of the exposure time to laser radiation, exploiting the properties of thermochromic cholesteric liquid crystals. This method overcomes the problems of miscibility of nanoparticles in liquid crystals, provides temperature reading at the microscale, since the cholesteric liquid crystal is confined in microdroplets, and it is sensitive to a temperature variation, 28°C-49°C, suitable for biological applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
    [CrossRef] [PubMed]
  2. G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
    [CrossRef] [PubMed]
  3. H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys. 34(9), R23–R53 (2001).
    [CrossRef]
  4. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [CrossRef] [PubMed]
  5. W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009).
    [CrossRef] [PubMed]
  6. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
    [CrossRef] [PubMed]
  7. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
    [CrossRef] [PubMed]
  8. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
    [CrossRef]
  9. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
    [CrossRef] [PubMed]
  10. G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17(5), 3291–3298 (2009).
    [CrossRef] [PubMed]
  11. L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
    [CrossRef] [PubMed]
  12. N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008).
    [CrossRef]
  13. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
    [CrossRef] [PubMed]
  14. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [CrossRef] [PubMed]
  15. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [CrossRef]
  16. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [CrossRef]
  17. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7(2), 171–187 (2013).
    [CrossRef]
  18. W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006).
    [CrossRef] [PubMed]
  19. J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005).
    [CrossRef] [PubMed]
  20. C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
    [CrossRef] [PubMed]
  21. G. M. Zharkova, V. M. Khachaturyan, L. A. Vostokov, and M. M. Alekseev, “Study of liquid thermoindicators” in Advances in Liquid Crystal Research and Applications (Pergamon, 1980), Vol. 2, pp. 1221–1239.
  22. G. Petriashvili, K. Japaridze, L. Devadze, C. Zurabishvili, N. Sepashvili, N. Ponjavidze, M. P. De Santo, M. A. Matranga, R. Hamdi, F. Ciuchi, and R. Barberi, “Paper like cholesteric interferential mirror,” Opt. Express 21(18), 20821–20830 (2013).
    [CrossRef] [PubMed]
  23. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
    [CrossRef] [PubMed]
  24. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
    [CrossRef]
  25. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, 1974).
  26. J. E. Adams, W. Haas, and J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969).
    [CrossRef]
  27. J. L. Fergason, “Cholesteric structure - 1 optical properties,” Mol. Cryst. 1(2), 293–307 (1966).
    [CrossRef]
  28. M. Parsley, Handbook of Thermochromic Liquid Crystal Technology (Hallcrest, 1991).
  29. J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
    [CrossRef]
  30. H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
    [CrossRef] [PubMed]

2013 (3)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7(2), 171–187 (2013).
[CrossRef]

G. Petriashvili, K. Japaridze, L. Devadze, C. Zurabishvili, N. Sepashvili, N. Ponjavidze, M. P. De Santo, M. A. Matranga, R. Hamdi, F. Ciuchi, and R. Barberi, “Paper like cholesteric interferential mirror,” Opt. Express 21(18), 20821–20830 (2013).
[CrossRef] [PubMed]

2012 (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[CrossRef]

2011 (1)

J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
[CrossRef]

2009 (5)

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17(5), 3291–3298 (2009).
[CrossRef] [PubMed]

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[CrossRef] [PubMed]

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009).
[CrossRef] [PubMed]

2008 (2)

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[CrossRef] [PubMed]

N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008).
[CrossRef]

2007 (3)

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

2006 (6)

G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
[CrossRef]

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

2001 (2)

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys. 34(9), R23–R53 (2001).
[CrossRef]

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

1969 (1)

J. E. Adams, W. Haas, and J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969).
[CrossRef]

1966 (1)

J. L. Fergason, “Cholesteric structure - 1 optical properties,” Mol. Cryst. 1(2), 293–307 (1966).
[CrossRef]

Adams, J. E.

J. E. Adams, W. Haas, and J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969).
[CrossRef]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7(2), 171–187 (2013).
[CrossRef]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17(5), 3291–3298 (2009).
[CrossRef] [PubMed]

Barberi, R.

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Bartolino, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
[CrossRef]

Berciaud, S.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

Blab, G. A.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Braun, D.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[CrossRef]

Brongersma, M. L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
[CrossRef]

Chilaya, G.

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[CrossRef] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
[CrossRef]

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Ciuchi, F.

Cognet, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

Collings, P.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
[CrossRef]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

De Santo, M. P.

Dejugnat, C.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Devadze, L.

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Fergason, J. L.

J. L. Fergason, “Cholesteric structure - 1 optical properties,” Mol. Cryst. 1(2), 293–307 (1966).
[CrossRef]

Funatsu, T.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Gota, C.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005).
[CrossRef] [PubMed]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Haas, W.

J. E. Adams, W. Haas, and J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969).
[CrossRef]

Haeberle, W.

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006).
[CrossRef] [PubMed]

Halas, N. J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Hamdi, R.

Hammiche, A.

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys. 34(9), R23–R53 (2001).
[CrossRef]

Harada, Y.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Hegmann, T.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Heine, M.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Hoerber, J. K. H.

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006).
[CrossRef] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Japaridze, K.

Karp, J. M.

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009).
[CrossRef] [PubMed]

Kim, J.

G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[CrossRef] [PubMed]

Kinkead, B.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Kotov, N. A.

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005).
[CrossRef] [PubMed]

Kreuzer, M. P.

Kulzer, F.

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

Lasne, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

Lee, J.

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005).
[CrossRef] [PubMed]

Lee, L. P.

G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[CrossRef] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Lennox, R. B.

J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
[CrossRef]

Li, B.

N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008).
[CrossRef]

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[CrossRef] [PubMed]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

Lounis, B.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Lu, Y. U.

G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[CrossRef] [PubMed]

Marx, V. M.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Matranga, M. A.

Milette, J.

J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
[CrossRef]

Möhwald, H.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Neumann, O.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

Nordlander, P.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

Okabe, K.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Pantea, M.

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006).
[CrossRef] [PubMed]

Parak, W. J.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Petriashvili, G.

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Pollock, H. M.

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys. 34(9), R23–R53 (2001).
[CrossRef]

Ponjavidze, N.

Qi, H.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7(2), 171–187 (2013).
[CrossRef]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17(5), 3291–3298 (2009).
[CrossRef] [PubMed]

Reven, L.

J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
[CrossRef]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

Rogach, A. L.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

Sepashvili, N.

Skirtach, A. G.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Sukhorukov, G. B.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Susha, A. S.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Toader, V.

J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
[CrossRef]

Uchiyama, S.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Wang, L.

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[CrossRef] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Wysocki, J.

J. E. Adams, W. Haas, and J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969).
[CrossRef]

Yang, N.

N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008).
[CrossRef]

Zhang, G.

N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008).
[CrossRef]

Zhang, H. R.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Zhao, W.

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009).
[CrossRef] [PubMed]

Zurabishvili, C.

ACS Nano (1)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008).
[CrossRef]

Biophys. J. (1)

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

ChemPhysChem (1)

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. E. Adams, W. Haas, and J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969).
[CrossRef]

J. Mater. Chem. (1)

J. Milette, V. Toader, L. Reven, and R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys. 34(9), R23–R53 (2001).
[CrossRef]

Laser Photon. Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7(2), 171–187 (2013).
[CrossRef]

Mol. Cryst. (1)

J. L. Fergason, “Cholesteric structure - 1 optical properties,” Mol. Cryst. 1(2), 293–307 (1966).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006).
[CrossRef]

Nano Lett. (3)

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Nano Today (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

Nat. Mater. (2)

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009).
[CrossRef] [PubMed]

G. L. Liu, J. Kim, Y. U. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Ultramicroscopy (1)

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006).
[CrossRef] [PubMed]

Other (3)

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, 1974).

G. M. Zharkova, V. M. Khachaturyan, L. A. Vostokov, and M. M. Alekseev, “Study of liquid thermoindicators” in Advances in Liquid Crystal Research and Applications (Pergamon, 1980), Vol. 2, pp. 1221–1239.

M. Parsley, Handbook of Thermochromic Liquid Crystal Technology (Hallcrest, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) CLC photonic band gap at different temperatures: 28°C (red line), 38°C (green line) and 49°C (blue line), (b) position of the middle-point of the photonic band gap as a function of temperature.

Fig. 2
Fig. 2

(a) Temperature distribution in a cuvette containing CLC microdroplets in a water and glycerol mixture. The temperature scale is built using data from Fig. 1. Optical microscope images of CLC microdroplets in a liquid crystals cell. Red color (b) is visible at room temperature, 25 °C, while blue (c) is visible at 42°C.

Fig. 3
Fig. 3

Experimental setup: cuvette (1), impinging laser beam @ 457nm (2), NCE (3), optical shutter (4), edge filter (5), QTH light source (6), fiber-coupled spectrometer (7).The laser beam travels inside the cuvette, parallel to its larger faces. The system to observe the reflected light from the suspension is formed by elements 4, 5, 6, 7, which illuminates and collects light perpendicularly to the laser beam.

Fig. 4
Fig. 4

Laser beam propagation through the NCE after (a) 10s and (b) 30s.

Fig. 5
Fig. 5

(a) Image of the laser beam propagating inside the NCE and (b) red arrow indicating the highest local temperature in correspondence of the previous laser beam propagation path immediately after switching off the laser beam.

Fig. 6
Fig. 6

(a) NCE selective reflection at 6 s (red line), 35 s (green line) and 90 s (blue line), under pumping laser irradiation. (b) Selective reflection of the emulsion not containing NPs, as a function of the exposure time: 6 s (red line), 35s (green line) and 90 s (blue line).

Fig. 7
Fig. 7

Spatial distribution of the temperature inside the NCE after 90 s of laser beam irradiation.

Metrics