Abstract

Titanium dioxide (TiO2) film is an important biomaterial used to improve the biocompatibility of titanium (Ti). We have used a film coating method with an aerosol beam and femtosecond laser irradiation to form periodic structures on biomaterials for control of the cell spreading. The control of cell spreading on biomaterials is important for the development of advanced biomaterials. In this study, nanostructures with periods of 130 and 230 nm were formed on a film using a femtosecond laser with wavelengths of 388 and 775 nm, respectively. The nanostructure period on the film was 30% of the laser wavelengths. Periods produced with wavelengths of 388 and 775 nm were calculated using a surface plasmon polariton (SPP) model and the experimental results for both wavelengths were in the range of the calculated periods, which suggests that the mechanism for the formation of the periodic nanostructures on the film with a femtosecond laser was due to the excitation of SPPs.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hanawa, “Biofunctionalization of titanium for dental implant,” Jpn. Dent. Sci. Rev. 46(2), 93–101 (2010).
    [CrossRef]
  2. L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
    [CrossRef] [PubMed]
  3. X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
    [CrossRef]
  4. Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
    [CrossRef]
  5. J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
    [CrossRef]
  6. M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
    [CrossRef]
  7. J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
    [CrossRef] [PubMed]
  8. A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012).
    [CrossRef] [PubMed]
  9. S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009).
    [CrossRef] [PubMed]
  10. K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
    [CrossRef] [PubMed]
  11. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
    [CrossRef]
  12. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
    [CrossRef]
  13. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
    [CrossRef]
  14. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
    [CrossRef]
  15. S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
    [CrossRef]
  16. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).
  17. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [CrossRef]
  18. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [CrossRef] [PubMed]
  19. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
    [CrossRef] [PubMed]
  20. K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
    [CrossRef]
  21. T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
    [CrossRef]
  22. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [CrossRef]
  23. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
    [CrossRef] [PubMed]
  24. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
    [CrossRef] [PubMed]
  25. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  26. F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21(13), 15259–15267 (2013).
    [CrossRef] [PubMed]
  27. M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).
  28. M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).
  29. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
    [CrossRef]
  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  32. B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” J. Phys. Chem. 100(3), 1027–1035 (1996).
    [CrossRef]

2014 (1)

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

2013 (3)

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[CrossRef]

F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21(13), 15259–15267 (2013).
[CrossRef] [PubMed]

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

2012 (3)

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
[CrossRef] [PubMed]

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012).
[CrossRef] [PubMed]

2011 (1)

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

2010 (3)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

T. Hanawa, “Biofunctionalization of titanium for dental implant,” Jpn. Dent. Sci. Rev. 46(2), 93–101 (2010).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

2009 (4)

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

2007 (1)

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

2006 (1)

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

2004 (2)

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[CrossRef]

2003 (3)

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[CrossRef]

1999 (1)

K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
[CrossRef] [PubMed]

1998 (1)

J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
[CrossRef]

1996 (1)

B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” J. Phys. Chem. 100(3), 1027–1035 (1996).
[CrossRef]

Abe, N.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Akedo, J.

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
[CrossRef]

Aramoto, G.

A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012).
[CrossRef] [PubMed]

Asuka, K.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

Bock, M.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

Bonse, J.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Buividas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Cheng, G.

Cheng, Y.

Chub, P. K.

X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[CrossRef]

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

Datsyuk, V.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

de Ruijter, J. E.

K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
[CrossRef] [PubMed]

Ding, C.

X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[CrossRef]

Doi, H.

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

Dufft, D.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Elias, M. M.

Enright, B.

B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” J. Phys. Chem. 100(3), 1027–1035 (1996).
[CrossRef]

Fitzmaurice, D.

B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” J. Phys. Chem. 100(3), 1027–1035 (1996).
[CrossRef]

Fujihara, T.

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Fujita, J.

Fujita, M.

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

Fujita, S.

S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009).
[CrossRef] [PubMed]

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

Hanawa, T.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

T. Hanawa, “Biofunctionalization of titanium for dental implant,” Jpn. Dent. Sci. Rev. 46(2), 93–101 (2010).
[CrossRef]

Hashida, M.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Heo, S. J.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

Ichiki, M.

J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
[CrossRef]

Ikuta, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Iwata, H.

S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009).
[CrossRef] [PubMed]

Jansen, J. A.

K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
[CrossRef] [PubMed]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

Juodkazis, S.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Katto, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Kayahara, T.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Khang, D.

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

Kikuchi, K.

J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
[CrossRef]

Kim, H. E.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Kim, H. W.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Kim, Y. W.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Kiuchi, J.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).

Koak, J. Y.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Kong, Y. M.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Kudrius, T.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Li, L. H.

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

Liao, Y.

Liu, X.

X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[CrossRef]

Lu, J.

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

MacDonald, N. C.

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

Maeda, R.

J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
[CrossRef]

Matsugaki, A.

A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012).
[CrossRef] [PubMed]

Matsushita, N.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

Matsuzaka, K.

K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
[CrossRef] [PubMed]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

Miyaji, G.

Miyake, S.

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Miyasaka, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Miyazaki, K.

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[CrossRef]

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
[CrossRef] [PubMed]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).

Nagai, A.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

Nakai, M.

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

Nakano, H.

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

Nakano, T.

A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012).
[CrossRef] [PubMed]

Nakayama, T.

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Niinomi, M.

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

Nomura, N.

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

Ohshima, M.

S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009).
[CrossRef] [PubMed]

Okamuro, K.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Rao, M. P.

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Rosa, L.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

Sakabe, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Shinonaga, T.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

Slekys, G.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Sliupas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Soga, Y.

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[CrossRef]

Stoian, R.

Sugioka, K.

Takahashi, M.

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

Tanaka, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

Tokita, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Tsukamoto, M.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Tsutsumi, H.

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

Tsutsumi, Y.

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

Umran, F. A.

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[CrossRef]

Walboomers, X. F.

K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
[CrossRef] [PubMed]

Wang, C.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

Webster, T. J.

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

Xie, G.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

Yamashita, K.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

Yasumaru, N.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).

Yoshida, M.

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

Yoshifuji, T.

Zhang, K.

Acta Biomater. (1)

J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008).
[CrossRef] [PubMed]

Appl. Phys. A Mater. Sci. Proc. (2)

M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).

M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).

Appl. Phys. A Mater.Sci. Proc. (1)

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).

Appl. Surf. Sci. (3)

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012).
[CrossRef]

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[CrossRef]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Biomaterials (3)

L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004).
[CrossRef] [PubMed]

A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012).
[CrossRef] [PubMed]

K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009).
[CrossRef]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[CrossRef]

J. Phys. Chem. (1)

B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” J. Phys. Chem. 100(3), 1027–1035 (1996).
[CrossRef]

J. Phys. Conf. Ser. (1)

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007).
[CrossRef]

J. R. Soc. Interface (1)

S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009).
[CrossRef] [PubMed]

Jpn. Dent. Sci. Rev. (1)

T. Hanawa, “Biofunctionalization of titanium for dental implant,” Jpn. Dent. Sci. Rev. 46(2), 93–101 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[CrossRef]

Nanotechnology (2)

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (3)

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998).
[CrossRef]

Vacuum (1)

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics