Abstract

Quantitative mode characterization of fibers with cores much beyond 50µm is difficult with existing techniques due to the combined effects of smaller intermodal group delays and dispersions. We demonstrate, for the first time, a new method using a matched white-light interferometry (MWI) to cancel fiber dispersion and achieve finer temporal resolution, demonstrating ~20fs temporal resolution in intermodal delays, i.e. 6µm path-length resolution. A 1m-long straight resonantly-enhanced leakage-channel fiber with 100µm core was characterized, showing ~55fs/m relative group delay and a ~29dB mode discrimination between the fundamental and second-order modes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [CrossRef]
  2. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
    [CrossRef]
  3. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [CrossRef] [PubMed]
  4. D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “33μm core effectively single-mode chirally-coupled-core fiber laser at 1064nm, ” Proc. of OFC (2008) paper OWU2.
  5. K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
    [CrossRef]
  6. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012).
    [CrossRef] [PubMed]
  7. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
    [CrossRef] [PubMed]
  8. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  9. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]
  10. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
    [CrossRef] [PubMed]
  11. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [CrossRef] [PubMed]
  12. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [CrossRef] [PubMed]
  13. R. A. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Resonant bend loss in leakage channel fibers,” Opt. Lett. 37(15), 3147–3149 (2012).
    [CrossRef] [PubMed]
  14. R. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Anomalous bent loss in large-mode-area leakage channel fibers,” Conference on Lasers and Electro Optics, paper CM1N.3, 2012.
  15. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [CrossRef] [PubMed]
  16. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).
  17. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
    [CrossRef] [PubMed]
  18. S. Diddams and J. C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13(6), 1120–1129 (1996).
    [CrossRef]
  19. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [CrossRef] [PubMed]

2013

2012

2011

2010

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

2009

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[CrossRef]

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

1996

Alkeskjold, T. T.

Barankov, R. A.

Broeng, J.

Dajani, I.

Diddams, S.

Diels, J. C.

Dong, L.

Eidam, T.

Fermann, M. E.

Fini, J. M.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).

Foy, P.

Fu, L.

Fujimaki, M.

Gu, G.

Hansen, K. R.

Hawkins, T. W.

Jansen, F.

Jauregui, C.

Kashiwagi, M.

Kong, F.

Koshiba, M.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Lægsgaard, J.

Li, J.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[CrossRef]

Limpert, J.

Marcinkevicius, A.

Matsuo, S.

Mckay, H. A.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).

Murao, T.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).

Ohta, M.

Otto, H. J.

Ramachandran, S.

Robin, C.

Rosa, L.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Saitoh, K.

Samson, B.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Smith, A. V.

Smith, J. J.

Steinmetz, A.

Stutzki, F.

Suzuki, S.

Takenaga, K.

Tanigawa, S.

Thomas, B. K.

Tünnermann, A.

Ward, B.

Wei, K.

Winful, H. G.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Wirth, C.

Wu, T. W.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).

IEEE J. Sel. Top. Quantum Electron.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Topics Quantum Electron. 15(1), 61–70 (2009).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[CrossRef] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[CrossRef] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[CrossRef] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[CrossRef] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[CrossRef] [PubMed]

Opt. Fiber Technol.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Opt. Lett.

Other

D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “33μm core effectively single-mode chirally-coupled-core fiber laser at 1064nm, ” Proc. of OFC (2008) paper OWU2.

R. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Anomalous bent loss in large-mode-area leakage channel fibers,” Conference on Lasers and Electro Optics, paper CM1N.3, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Re-LCF design with non-identical cladding layer structure, (b) simulated 2nd HOM loss versus variable node-pitch ratio. R2 = d2/Λ.

Fig. 2
Fig. 2

Fabricated Re-LCF with 100 µm core diameter.

Fig. 3
Fig. 3

Illustration of interferometry resolution: (a) broad spectrum and balanced dispersion; (b) narrow spectrum and balanced dispersion; (c) broad spectrum and un-balanced dispersion. Filled and open parallelogram represents coherent light from measurement and reference arms respectively.

Fig. 4
Fig. 4

Principle of mode characterization in optical fiber with matched white-light interferometry (MWI).

Fig. 5
Fig. 5

Schematic diagram of the matched white-light interferometry.

Fig. 6
Fig. 6

Intensity oscillation during the interferometry scanning at the pixel at the lobe center of the reconstructed image B.

Fig. 7
Fig. 7

Reconstructed mode patterns and phases corresponding to the peaks from A to E found in Fig. 6 with calculated MPI value for HOMs.

Fig. 8
Fig. 8

M2 measurement of the output beam from the Re-LCF fiber in x, y directions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=2 E 0 2 +2 E 0 2 ×cos( φ 10 φ 20 )×L(t t 1 )×L((t+ΔT) t 2 ) | ΔT= t 2 t 1 +2 E 1 E 0 ×cos( φ 21 φ 10 )×L(t t 1 )×L((t+ΔT)( t 2 Δ t 1 ) | ΔT=( t 2 t 1 )Δ t 1 +2 E 2 E 0 ×cos( φ 22 φ 10 )×L(t t 1 )×L((t+ΔT)( t 2 Δ t 2 ) | ΔT=( t 2 t 1 )Δ t 2 +2 E 1 E 0 ×cos( φ 20 φ 11 )×L(t( t 1 Δ t 1 ))×L((t+ΔT) t 2 ) | ΔT=( t 2 t 1 )+Δ t 1 +2 E 2 E 0 ×cos( φ 20 φ 12 )×L(t( t 1 Δ t 2 ))×L((t+ΔT) t 2 ) | ΔT=( t 2 t 1 )+Δ t 2

Metrics