Abstract

The energy transfer mechanisms between Er3+ and Yb3+ ions have been investigated in LiLa9(SiO4)6O2 under selective Er3+ excitation. IR emission spectra, measured in the CW excitation regime, were used to establish a relationship between the macroscopic transfer and back transfer parameters. These measurements were combined with the results obtained under pulsed excitation to quantify the absolute values of transfer (Yb3+ → Er3+) and back transfer coefficients (Er3+ → Yb3+), C25 = 9.5 × 10−17 cm3s−1 and C52 = 1.4 × 10−17 cm3s−1, respectively. Additionally, it has been observed an energy transfer that reduces the quantum efficiency of the green emitting Er3+ levels. The corresponding macroscopic coefficient has been also determined (CGQ = 6.1 × 10−17 cm3s−1).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
    [CrossRef]
  2. E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
    [CrossRef]
  3. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. Roland, “Laser properties of Nd+3 and Ho+3 doped crystals with the apatite structure,” Appl. Opt. 11(5), 999–1012 (1972).
    [CrossRef] [PubMed]
  4. P. E. A. Möbert, E. Heumann, G. Huber, and B. H. Chai, “Green Er3+:YLiF4 upconversion laser at 551nm with Yb3+ codoping: a novel pumping scheme,” Opt. Lett. 22(18), 1412–1414 (1997).
    [CrossRef] [PubMed]
  5. Q. Wang, R. Ahrens, and N. K. Dutta, “Optical gain of single mode short Er/Yb doped fiber,” Opt. Express 12(25), 6192–6197 (2004).
    [CrossRef] [PubMed]
  6. S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
    [CrossRef]
  7. I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express 20(9), 9471–9475 (2012).
    [CrossRef] [PubMed]
  8. Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
    [CrossRef]
  9. N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
    [CrossRef]
  10. C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
    [PubMed]
  11. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [CrossRef] [PubMed]
  12. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [CrossRef] [PubMed]
  13. M. Marin-Dobrincic, E. Cantelar, and F. Cusso, “Temporal dynamics of IR-to-visible up-conversion in LiNbO3:Er3+/Yb3+: a path to phosphors with tunable chromaticity,” Opt. Mater. Express 2(11), 1529–1537 (2012).
    [CrossRef]
  14. M. Setoguchi, “Crystal growth of silicate apatites by flux method,” J. Cryst. Growth 99(1–4), 879–884 (1990).
    [CrossRef]
  15. E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
    [CrossRef] [PubMed]
  16. L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
    [CrossRef]
  17. B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
    [CrossRef]
  18. E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
    [CrossRef]
  19. E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
    [CrossRef]
  20. Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
    [CrossRef]
  21. R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
    [CrossRef]
  22. F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
    [CrossRef]

2012 (3)

2011 (2)

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

2010 (2)

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

2009 (1)

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

2008 (1)

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

2007 (2)

Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
[CrossRef]

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
[CrossRef]

2004 (1)

2001 (1)

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

1998 (1)

E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
[CrossRef]

1997 (1)

1996 (1)

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

1995 (1)

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
[CrossRef]

1990 (1)

M. Setoguchi, “Crystal growth of silicate apatites by flux method,” J. Cryst. Growth 99(1–4), 879–884 (1990).
[CrossRef]

1972 (3)

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
[CrossRef]

K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. Roland, “Laser properties of Nd+3 and Ho+3 doped crystals with the apatite structure,” Appl. Opt. 11(5), 999–1012 (1972).
[CrossRef] [PubMed]

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
[CrossRef]

1971 (1)

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Ahrens, R.

Awazu, K.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
[CrossRef]

Bayri, A.

Belletti, A.

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

Bettinelli, M.

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Calestani, G.

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Cantelar, E.

M. Marin-Dobrincic, E. Cantelar, and F. Cusso, “Temporal dynamics of IR-to-visible up-conversion in LiNbO3:Er3+/Yb3+: a path to phosphors with tunable chromaticity,” Opt. Mater. Express 2(11), 1529–1537 (2012).
[CrossRef]

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
[CrossRef]

Cavalli, E.

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Chai, B. H.

Cheng, L.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[PubMed]

Cusso, F.

M. Marin-Dobrincic, E. Cantelar, and F. Cusso, “Temporal dynamics of IR-to-visible up-conversion in LiNbO3:Er3+/Yb3+: a path to phosphors with tunable chromaticity,” Opt. Mater. Express 2(11), 1529–1537 (2012).
[CrossRef]

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
[CrossRef]

Cussó, F.

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

Di Paolo, R. E.

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

Dülgergil, E.

Dutta, N. K.

Falcomer, D.

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Geusic, J. E.

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Guggenheim, H. J.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
[CrossRef]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Henningsen, T.

Heumann, E.

Hopkins, R. H.

Huber, G.

Ilbey, E.

Ilday, F. Ö.

Johnson, L. F.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
[CrossRef]

Katayanagi, K.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
[CrossRef]

Keller, U.

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
[CrossRef]

Lejus, A. M.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Li, Z.

Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
[CrossRef]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[PubMed]

Marcos, H. M.

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Marin-Dobrincic, M.

Masui, H.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
[CrossRef]

Mazelsky, R.

Melamed, N. T.

Mita, Y.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
[CrossRef]

Möbert, P. E. A.

Muñoz, J. A.

E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
[CrossRef]

Muto, K.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
[CrossRef]

Nuñez, N. O.

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

Ocaña, M.

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

Okamoto, E.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
[CrossRef]

Ostermayer, F. W.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
[CrossRef]

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Pavlov, I.

Quintanilla, M.

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Rich, T. C.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
[CrossRef]

Riedel, E. P.

Roland, G. W.

Sanz-García, J. A.

E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
[CrossRef]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Setoguchi, M.

M. Setoguchi, “Crystal growth of silicate apatites by flux method,” J. Cryst. Growth 99(1–4), 879–884 (1990).
[CrossRef]

Shionoya, S.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
[CrossRef]

Simondi-Teisseire, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Speghini, A.

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Steinbruegge, K. B.

Südmeyer, T.

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
[CrossRef]

Tao, H.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[PubMed]

Tsuboi, T.

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

van der Ziel, J. P.

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Van Uiter, L. G.

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Viana, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Vivien, D.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Wang, C.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[PubMed]

Wang, Q.

Wang, X. M.

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

Weingarten, K. J.

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
[CrossRef]

Xiong, L.

Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
[CrossRef]

Yamamoto, H.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
[CrossRef]

Zeller, S. C.

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
[CrossRef]

Zhang, L.

Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
[CrossRef]

Zheng, L.

Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
[CrossRef]

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomaterials (1)

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[PubMed]

Chem. Soc. Rev. (1)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43(1), 32–33 (2007).
[CrossRef]

J. Appl. Phys. (3)

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43(3), 1125–1137 (1972).
[CrossRef]

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43(5), 2122–2125 (1972).
[CrossRef]

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78(2), 1219–1223 (1995).
[CrossRef]

J. Cryst. Growth (1)

M. Setoguchi, “Crystal growth of silicate apatites by flux method,” J. Cryst. Growth 99(1–4), 879–884 (1990).
[CrossRef]

J. Lumin. (2)

M. Bettinelli, A. Speghini, D. Falcomer, E. Cavalli, G. Calestani, M. Quintanilla, E. Cantelar, and F. Cussó, “Crystal structure and optical spectra of LiLa9(SiO4)2 crystals activated with Er3+,” J. Lumin. 128(5–6), 738–740 (2008).
[CrossRef]

Z. Li, L. Zheng, L. Zhang, and L. Xiong, “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system,” J. Lumin. 126(2), 481–486 (2007).
[CrossRef]

J. Nanopart. Res. (1)

N. O. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthetised in polyol media through an ionic liquid,” J. Nanopart. Res. 12(7), 2553–2565 (2010).
[CrossRef]

J. Phys. Condens. Matter (3)

E. Cantelar, M. Quintanilla, F. Cussó, E. Cavalli, and M. Bettinelli, “Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals,” J. Phys. Condens. Matter 22(21), 215901 (2010).
[CrossRef] [PubMed]

R. E. Di Paolo, E. Cantelar, X. M. Wang, T. Tsuboi, and F. Cussó, “Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+ -codoped YVO4 crystals,” J. Phys. Condens. Matter 13(35), 7999–8006 (2001).
[CrossRef]

E. Cantelar, J. A. Muñoz, J. A. Sanz-García, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10(39), 8893–8903 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (2)

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

E. Cavalli, G. Calestani, A. Belletti, M. Bettinelli, and A. Speghini, “Optical spectroscopy of Nd3+ in LiLa9(SiO4)2 crystals,” Opt. Mater. 31(9), 1340–1342 (2009).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B (1)

F. W. Ostermayer, J. P. van der Ziel, H. M. Marcos, L. G. Van Uiter, and J. E. Geusic, “Frequency upconversion in YF3:Yb3+,Tm3+,” Phys. Rev. B 3(8), 2698–2705 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical microscope photograph showing the morphology of the LLS grown crystals.

Fig. 2
Fig. 2

(a) Infrared emission spectra measured in samples #1 and #2 under selective Er3+ excitation at 800 nm (blue and red lines respectively). (b) Partial energy level diagram showing the dominant emission bands and energy transfer processes observed after excitation at 800 nm.

Fig. 3
Fig. 3

Least squares fit of (1 - Pr)/Pr as function of Yb3+ concentration.

Fig. 4
Fig. 4

(a) Visible emission spectra measured in samples #1 and #2 under selective Er3+ excitation at 532 nm (blue and red solid lines respectively). (b) Partial energy level diagram showing the dominant emission bands and energy transfer processes observed after excitation at 532 nm.

Fig. 5
Fig. 5

(a) Temporal evolution of the 2H11/2:4S3/24I15/2 emission band as function of Yb3+ concentration. (b) Estimation of the CGQ energy transfer coefficient associated to the cross relaxation process 4S3/24I13/2 (Er3+):2F7/22F5/2 (Yb3+).

Fig. 6
Fig. 6

Experimental (dots) and predicted lifetimes (lines) of the resonant levels, 4I11/2(Er3+):2F5/2(Yb3+), as function of Yb3+ concentration.

Fig. 7
Fig. 7

Temporal evolution of the dominant emission bands in sample #4: measured after pulsed excitation at 532 nm (symbols) and calculated by numerical integration (solid lines).

Fig. 8
Fig. 8

Experimental (symbols) and calculated (solid lines) lifetimes, under excitation at 532 nm, for the three main luminescence emissions of LLS:Er3+/Yb3+ as function of Yb3+ concentration.

Tables (2)

Tables Icon

Table 1 Er3+ and Yb3+ concentrations in the studied samples

Tables Icon

Table 2 Radiative, Aij, and total, Aim = τi,exp−1 = Σj Aij + WijNR , transition probabilities.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d N 5 dt = R P N 3 + C 25 N 2 N 3 C 52 N 5 N 1 A 5m N 5
d N 4 dt =( A 54 + W 54 NR ) N 5 A 4m N 4
d N 2 dt = C 52 N 5 N 1 C 25 N 2 N 3 A 2m N 2
N 3 = N Er N 4 N 5 N Er
N 1 = N Yb N 2 N Yb
0 C 52 N 5 N Yb C 25 N 2 N Er A 2m N 2
N 2 N 5 C 52 N Yb C 25 N Er + A 2m
P r = P 53 P 53 + P 21
1 P r P r = A 2m A 53 C 52 C 25 N Er + A 2m N Yb β N Yb
C 52 = A 53 A 2m β( C 25 N Er + A 2m )
P r = P 43 P 53 + P 21 ( P 53 ' P 43 ' )
d N 7 dt = R P N 3 C GQ N 7 N 1 A 7m N 7
d N 6 dt =( A 76 + W 76 NR ) N 7 A 6m N 6
d N 5 dt = A 75 N 7 +( A 65 + W 65 NR ) N 6 + C 25 N 2 N 3 C 52 N 5 N 1 A 5m N 5
d N 4 dt = C 74 N 7 N 1 + A 74 N 7 + A 64 N 6 +( A 54 + W 54 NR ) N 5 A 4m N 4
d N 2 dt = C 52 N 5 N 1 + C GQ N 7 N 1 C 25 N 2 N 3 A 2m N 2
N 3 = N Er N 4 N 5 N 6 N 7
N 1 = N Yb N 2
1 τ exp A 7m + C GQ N Yb
1 τ exp A 7m = C GQ N Yb
C GQ =( 6.1±0.1 )× 10 17 c m 3 s -1

Metrics