Abstract

In this study, a technique was developed to compensate for nonlinear distortion through cancelling subcarrier-to-subcarrier intermixing interference (SSII) in an electroabsorption modulator (EAM)-based orthogonal frequency-division multiplexing (OFDM) transmission system. The nonlinear distortion to be compensated for is induced by both EAM nonlinearity and fiber dispersion. Because an OFDM signal features an inherently high peak-to-average power ratio, a trade-off exists between the optical modulation index (OMI) and modulator nonlinearity. Therefore, the nonlinear distortion limits the operational tolerance of the bias voltage and the driving power to a small region. After applying the proposed SSII cancellation, the OMI of an OFDM signal was increased yielding only a small increment of nonlinear distortion, and the tolerance region of the operational conditions was also increased. By employing the proposed scheme, this study successfully demonstrates 50-Gbps OFDM transmission over 100-km dispersion-uncompensated single-mode fiber based on a single 10-GHz EAM.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SSII cancellation in an EAM-based OFDM-IMDD transmission system employing a novel dynamic chirp model

Dar-Zu Hsu, Chia-Chien Wei, Hsing-Yu Chen, Yi-Cheng Lu, Cih-Yuan Song, Chih-Chieh Yang, and Jyehong Chen
Opt. Express 21(1) 533-543 (2013)

High-Capacity and High-Loss-Budget OFDM Long-Reach PON Without an Optical Amplifier [Invited]

Hsing-Yu Chen, Chia-Chien Wei, I-Cheng Lu, Hsuan-Hao Chu, Yu-Chao Chen, and Jyehong Chen
J. Opt. Commun. Netw. 7(1) A59-A65 (2015)

Optical single-sideband OFDM transmission based on a two-segment EAM

Hsuan-Lin Cheng, Wei-Hung Chen, Chia-Chien Wei, and Yi-Jen Chiu
Opt. Express 23(2) 982-990 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
    [Crossref]
  2. P. D. Townsend, G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Long reach passive optical networks” in Proc. of LEOS, ThW1 (2007).
    [Crossref]
  3. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol. 27(3), 273–291 (2009).
    [Crossref]
  4. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
    [Crossref]
  5. D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol. 25(3), 685–693 (2007).
    [Crossref]
  6. D. Z. Hsu, C. C. Wei, H. Y. Chen, J. Chen, M. C. Yuang, S. H. Lin, and W. Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express 18(26), 27758–27763 (2010).
    [Crossref] [PubMed]
  7. D. Z. Hsu, C. C. Wei, H. Y. Chen, W. Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011).
    [Crossref] [PubMed]
  8. D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver” in Proc. of OFC, OW4B.2 (2012).
    [Crossref]
  9. A. Gharba, P. Chanclou, M. Ouzzif, J. L. Masson, L. A. Neto, R. Xia, N. Genay, B. Charbonnier, M. Hélard, E. Grard, and V. Rodrigues, “Optical transmission performance for DML considering laser chirp and fiber dispersion using AMOOFDM” in Proc. of ICUMT, 1022–1026 (2010).
    [Crossref]
  10. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, Y.-C. Lu, C.-Y. Song, C.-C. Yang, and J. Chen, “SSII cancellation in an EAM-based OFDM-IMDD transmission system employing a novel dynamic chirp model,” Opt. Express 21(1), 533–543 (2013).
    [Crossref] [PubMed]
  11. C. C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36(2), 151–153 (2011).
    [Crossref] [PubMed]
  12. C. C. Wei, “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems,” Opt. Express 20(23), 25774–25789 (2012).
    [Crossref] [PubMed]
  13. W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear Distortion and DSP-based Compensation in Metro and Access Networks using Discrete Multi-tone” in Proc. of ECOC, Mo.1.B.2. (2012)
    [Crossref]
  14. T. Alves, J. Morgado, and A. Cartaxo, “Linearity improvement of directly modulated PONs by digital predistortion of coexisting OFDM-based signals” in Proc. of ANIC, AW4A.2. (2012)
  15. Y. Bao, Z. Li, J. Li, X. Feng, B. O. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express 21(6), 7354–7361 (2013).
    [Crossref] [PubMed]
  16. H. Y. Chen, C. C. Wei, Y. C. Chen, H. H. Chu, C.Y. Song, I. C. Lu, and J. Chen, “50-Gbps 100-km EAM-based OFDM-IMDD Transmission Employing Novel SSII Cancellation” (submitted) (2014).
    [Crossref]
  17. B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
    [Crossref]
  18. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and Experimental Investigations of Direct-Detected RF-Tone-Assisted Optical OFDM Systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [Crossref]
  19. T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
    [Crossref]

2013 (2)

2012 (1)

2011 (3)

2010 (1)

2009 (3)

2007 (1)

2006 (1)

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
[Crossref]

2004 (1)

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Agata, A.

Appathurai, S.

Arbab, V. R.

Bao, Y.

Bowers, J. E.

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Chanclou, P.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Chang, J. H.

Charbonnier, B.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Chen, H. Y.

Chen, H.-Y.

Chen, J.

Chi, S.

Chiu, Y.-J.

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Cho, K. Y.

Chou, H. F.

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Christen, L. C.

Chung, Y. C.

Davey, R. P.

Duong, T. N.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Feng, K.-M.

Feng, X.

Genay, N.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Grossman, D. B.

Guan, B. O.

Horiuchi, Y.

Hsu, D. Z.

Hsu, D.-Z.

Jung, S. P.

Kelly, A. E.

Koonen, T.

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
[Crossref]

Le Masson, J.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Li, G.

Li, J.

Li, W. Y.

Li, Z.

Lin, S. H.

Liu, B.

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Lu, Y.-C.

Mitchell, J.

Nesset, D.

Ouzzif, M.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Payne, D. B.

Peng, W.-R.

Piprek, J.

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Rafel, A.

Rasztovits-Wiech, M.

Sano, T.

Shamee, B.

Shea, D.

Shim, J.

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

Simon, J. C.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Song, C.-Y.

Suzuki, M.

Takushima, Y.

Tanaka, K.

Wei, C. C.

Wei, C.-C.

Willner, A. E.

Wu, X.

Yang, C.-C.

Yang, J.-Y.

Yang, S. H.

Yuang, M. C.

IEEE Photon. Technol. Lett. (2)

B. Liu, J. Shim, Y.-J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope Efficiency and Dynamic Range of Traveling-Wave Multiple-Quantum-Well Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 16(2), 590–592 (2004).
[Crossref]

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
[Crossref]

Other (6)

P. D. Townsend, G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Long reach passive optical networks” in Proc. of LEOS, ThW1 (2007).
[Crossref]

D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver” in Proc. of OFC, OW4B.2 (2012).
[Crossref]

A. Gharba, P. Chanclou, M. Ouzzif, J. L. Masson, L. A. Neto, R. Xia, N. Genay, B. Charbonnier, M. Hélard, E. Grard, and V. Rodrigues, “Optical transmission performance for DML considering laser chirp and fiber dispersion using AMOOFDM” in Proc. of ICUMT, 1022–1026 (2010).
[Crossref]

H. Y. Chen, C. C. Wei, Y. C. Chen, H. H. Chu, C.Y. Song, I. C. Lu, and J. Chen, “50-Gbps 100-km EAM-based OFDM-IMDD Transmission Employing Novel SSII Cancellation” (submitted) (2014).
[Crossref]

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear Distortion and DSP-based Compensation in Metro and Access Networks using Discrete Multi-tone” in Proc. of ECOC, Mo.1.B.2. (2012)
[Crossref]

T. Alves, J. Morgado, and A. Cartaxo, “Linearity improvement of directly modulated PONs by digital predistortion of coexisting OFDM-based signals” in Proc. of ANIC, AW4A.2. (2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The block diagram of the SSII cancellation technique and the schematic spectra of SSII.
Fig. 2
Fig. 2 Experimental setup of an EAM-based OFDM-IMDD 100-km transmission.
Fig. 3
Fig. 3 (a) The transfer curve of the EAM and the corresponding chirp parameters, and (b) the 100-km SSMF channel response with different bias voltages.
Fig. 4
Fig. 4 The SNR without SSII cancellation at the bias (a) −0.55 V, (b) −0.75 V and (c) −0.95 V, and the SNR with SSII cancellation at the bias of (d) −0.55 V, (e) −0.75 V and (f) −0.95 V, and the corresponding SNR improvement at the bias of (g) −0.55 V, (h) −0.75 V and (i) −0.95 V.
Fig. 5
Fig. 5 Estimated data rate after 100-km SSMF transmission as the function of driving power of the EAM and bias voltage (a) without and (b) with SSII cancellation.
Fig. 6
Fig. 6 (a) Highest data rate and (b) the corresponding driving powers required to reach the highest data rate at different bias voltage.
Fig. 7
Fig. 7 The SNR without SSII cancellation before and after applying the bit-loading algorithm at the bias of (a) −0.55 V, (b) −0.75 V and (c) −0.95 V, the SNR with SSII cancellation at the bias of (d) −0.55 V, (e) −0.75V and (f) −0.95 V, and the corresponding bit numbers after applying bit-loading at the bias of (g) −0.55 V, (h) −0.75 V and (i) −0.95 V.

Tables (1)

Tables Icon

Table 1 Chirp Parameters and 3-dB, 9-dB, and 15-dB Bandwidth within 10 GHz at Different Biases

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E1+ 1j α 0 2 X ( 1+ α 0 2 4 p 2 )+j4( α 1 + α 0 p 2 ) 8 X 2 ,
R= | Θ{ E } | 2 1+{ (1j α 0 )Θ{ X } } + (1+ α 0 2 ) 4 ×[ | Θ{ X } | 2 | sec θ p |{ Θ{ X 2 } e j θ p }+u| sec θ p |{ Θ{ X 2 } e j θ p } ] SSII ,

Metrics