Abstract

A facile and simple route to manufacture active surface-enhanced Raman scattering (SERS) substrate based on Ag-decorated Cu2O micro/nanospheres on Cu foil was systematically investigated. Hierarchical Cu2O micro/nanostructure transfers from CuO nanosheets and Cu(OH)2 nanowires by means of thermally reducing the oxides from Cu2+ to Cu1+ at temperature of 500 °Cunder nitrogen atmosphere. The subsequent decoration of Ag on Cu2O nanostructural substrate was carried out by means of thermal evaporator deposition. Using 4-aminothiophenol (4-ATP) as probing molecules, the SERS experiments showed that the Ag-decorated Cu2O micro/nanospheres exhibit excellent detecting performance, which could be used as effective SERS substrate for ultrasensitive detection. Additionally, these novel hierarchical SERS substrates showed good reproducibility and a linear dependence between analyte concentrations and intensities, revealing the advantage of this method for easily scale-up production.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. D. Graham and R. Goodacre, “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37(5), 883–884 (2008).
    [Crossref] [PubMed]
  2. M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
    [Crossref] [PubMed]
  3. X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
    [Crossref] [PubMed]
  4. M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
    [Crossref]
  5. J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
    [Crossref] [PubMed]
  6. J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
    [Crossref]
  7. R. C. Wang and H. Y. Lin, “Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments,” Mater. Chem. Phys. 136(2–3), 661–665 (2012).
    [Crossref]
  8. L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
    [Crossref]
  9. Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
    [Crossref]
  10. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
    [Crossref]
  11. Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
    [Crossref]
  12. Y. K. Hsu, Y. C. Chen, and Y. G. Lin, “Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes,” J. Electroanal. Chem. 673, 43–47 (2012).
    [Crossref]
  13. Y. K. Hsu, H. H. Lin, J. R. Wu, M. H. Chen, Y. C. Chen, and Y. G. Lin, “Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application,” RSC Advances (2014).
  14. A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
    [Crossref]
  15. L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
    [Crossref] [PubMed]
  16. R. C. Wang and C. H. Li, “Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering,” Acta Mater. 59(2), 822–829 (2011).
    [Crossref]
  17. C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
    [Crossref]
  18. C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
    [Crossref]
  19. P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
    [Crossref] [PubMed]

2013 (5)

M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
[Crossref]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
[Crossref]

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
[Crossref]

2012 (4)

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref]

Y. K. Hsu, Y. C. Chen, and Y. G. Lin, “Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes,” J. Electroanal. Chem. 673, 43–47 (2012).
[Crossref]

R. C. Wang and H. Y. Lin, “Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments,” Mater. Chem. Phys. 136(2–3), 661–665 (2012).
[Crossref]

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

2011 (2)

X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
[Crossref] [PubMed]

R. C. Wang and C. H. Li, “Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering,” Acta Mater. 59(2), 822–829 (2011).
[Crossref]

2010 (1)

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

2009 (2)

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

2008 (2)

D. Graham and R. Goodacre, “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37(5), 883–884 (2008).
[Crossref] [PubMed]

M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
[Crossref] [PubMed]

2006 (1)

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

1998 (1)

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Alvarez-Puebla, R. A.

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

Bao, Y.

C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
[Crossref]

Bukowska, J.

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Buriak, J. M.

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

Chen, M.

M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
[Crossref]

Chen, Y. C.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
[Crossref]

Y. K. Hsu, Y. C. Chen, and Y. G. Lin, “Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes,” J. Electroanal. Chem. 673, 43–47 (2012).
[Crossref]

Chui, Y. S.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Cromer, R.

M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
[Crossref] [PubMed]

Diao, G.

M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
[Crossref]

Dolata, M.

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Fenniri, H.

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

Gao, Y.

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

Goodacre, R.

D. Graham and R. Goodacre, “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37(5), 883–884 (2008).
[Crossref] [PubMed]

Graham, D.

D. Graham and R. Goodacre, “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37(5), 883–884 (2008).
[Crossref] [PubMed]

Grochala, W.

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Guo, L.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

He, L. F.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Hsu, Y. K.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
[Crossref]

Y. K. Hsu, Y. C. Chen, and Y. G. Lin, “Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes,” J. Electroanal. Chem. 673, 43–47 (2012).
[Crossref]

Huang, J. A.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Huang, Q.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Huang, Z.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Janik-Czachor, M.

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Jiang, C.

C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
[Crossref]

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref]

Jiang, L.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

Jiang, X.

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Kudelski, A.

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Lee, S. T.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Li, C. H.

R. C. Wang and C. H. Li, “Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering,” Acta Mater. 59(2), 822–829 (2011).
[Crossref]

Li, L.

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

Lin, H. Y.

R. C. Wang and H. Y. Lin, “Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments,” Mater. Chem. Phys. 136(2–3), 661–665 (2012).
[Crossref]

Lin, Y. G.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
[Crossref]

Y. K. Hsu, Y. C. Chen, and Y. G. Lin, “Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes,” J. Electroanal. Chem. 673, 43–47 (2012).
[Crossref]

Lombardi, J. R.

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Meng, G.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Mu, L.

X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
[Crossref] [PubMed]

Natan, M. J.

M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
[Crossref] [PubMed]

Netzer, N. L.

C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
[Crossref]

Qiu, C.

C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
[Crossref]

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref]

Ruan, W.

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Sha, M. Y.

M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
[Crossref] [PubMed]

Shang, Y.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

She, G.

X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
[Crossref] [PubMed]

Shi, W.

X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
[Crossref] [PubMed]

Song, W.

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Szummer, A.

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Tang, H.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Wang, C.

M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
[Crossref]

Wang, H.

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref]

Wang, R. C.

R. C. Wang and H. Y. Lin, “Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments,” Mater. Chem. Phys. 136(2–3), 661–665 (2012).
[Crossref]

R. C. Wang and C. H. Li, “Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering,” Acta Mater. 59(2), 822–829 (2011).
[Crossref]

Wang, X.

X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Wei, X.

M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
[Crossref]

Wong, T. L.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Xu, H.

M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
[Crossref] [PubMed]

Xu, W.

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Yang, J.

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Yang, L.

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Yang, S.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

Yin, P.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

Yin, P. G.

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

You, T.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

You, T. T.

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

Yu, C. H.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
[Crossref]

Zhang, D.

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

Zhang, L.

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref]

Zhang, W. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, Z.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Zhao, B.

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Zhao, Y. Q.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhou, W.

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

Zhu, C.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Acta Mater. (1)

R. C. Wang and C. H. Li, “Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering,” Acta Mater. 59(2), 822–829 (2011).
[Crossref]

Adv. Funct. Mater. (1)

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22(1), 218–224 (2012).
[Crossref]

Adv. Mater. (1)

J. Zhang, Y. Gao, R. A. Alvarez-Puebla, J. M. Buriak, and H. Fenniri, “Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers,” Adv. Mater. 18(24), 3233–3237 (2006).
[Crossref]

Chem. Soc. Rev. (1)

D. Graham and R. Goodacre, “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37(5), 883–884 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc. 130(51), 17214–17215 (2008).
[Crossref] [PubMed]

X. Wang, W. Shi, G. She, and L. Mu, “Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism,” J. Am. Chem. Soc. 133(41), 16518–16523 (2011).
[Crossref] [PubMed]

J. Electroanal. Chem. (1)

Y. K. Hsu, Y. C. Chen, and Y. G. Lin, “Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes,” J. Electroanal. Chem. 673, 43–47 (2012).
[Crossref]

J. Mater. Chem. A (1)

C. Qiu, Y. Bao, N. L. Netzer, and C. Jiang, “Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching,” J. Mater. Chem. A 1(31), 8790–8797 (2013).
[Crossref]

J. Phys. Chem. C (3)

M. Chen, C. Wang, X. Wei, and G. Diao, “Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering,” J. Phys. Chem. C 117(26), 13593–13601 (2013).
[Crossref]

L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, “Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites,” J. Phys. Chem. C 113(36), 16226–16231 (2009).
[Crossref]

Y. Wang, W. Song, W. Ruan, J. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref]

J. Power Sources (1)

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources 242, 541–547 (2013).
[Crossref]

J. Raman Spectrosc. (1)

A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, and M. Dolata, “Surface-enhanced Raman scattering (SERS) at copper(I) oxide,” J. Raman Spectrosc. 29(5), 431–435 (1998).
[Crossref]

Mater. Chem. Phys. (1)

R. C. Wang and H. Y. Lin, “Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments,” Mater. Chem. Phys. 136(2–3), 661–665 (2012).
[Crossref]

Nano Lett. (1)

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Nanoscale (1)

L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, and S. Yang, “Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement,” Nanoscale 5(7), 2784–2789 (2013).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

P. G. Yin, L. Jiang, T. T. You, W. Zhou, L. Li, L. Guo, and S. Yang, “Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: Comparison of theory and experiment,” Phys. Chem. Chem. Phys. 12(36), 10781–10785 (2010).
[Crossref] [PubMed]

Other (1)

Y. K. Hsu, H. H. Lin, J. R. Wu, M. H. Chen, Y. C. Chen, and Y. G. Lin, “Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application,” RSC Advances (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of synthesis for Ag-decorated Cu2O micro/nanospheres film on Cu foil.

Fig. 2
Fig. 2

(a) FESEM image of flower-like CuO standing on Cu(OH)2 nanowires. FESEM image of (b) bare and (c) Ag-decorated Cu2O micro/nanospheres film. (d) EDS of Ag-decorated Cu2O micro/nano-spheres film.

Fig. 3
Fig. 3

X-ray diffraction patterns of bare and Ag-decorated Cu2O micro/nanospheres film.

Fig. 4
Fig. 4

(a) Raman spectra of 4-ATP adsorbed on the Cu2O micro/nanospheres film (top) and the 1 mM 4-ATP solution (bottom). (b) Raman spectra of 4-ATP with variable concentration adsorbed on the Cu2O micro/nanospheres film.

Fig. 5
Fig. 5

(a) Raman spectra of 4-ATP adsorbed on the bare and Ag-decorated Cu2O micro/ nanospheres film. (b) Raman spectra of 4-ATP with variable concentration adsorbed on the Ag-decorated Cu2O micro/nanospheres film.

Fig. 6
Fig. 6

The linear relationship between the logarithmic intensities at 1145 cm−1 and concentrations of 4-ATP.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EF=( I SERS I bulk )( N bulk N ads )
logI=5.81+0.61×logC

Metrics