Abstract

Achieving narrow resonance is an area of interest within the field of metamaterials. However, only a few studies have investigated the polarization-insensitive resonances. A general principle for improving quality Q-factor of a sharp resonance is still unclear. In this work, we proposed a kind of planar meta-molecule metamaterials, which can exhibit polarization-insensitive resonance with high Q-factor. The proposed structures have a unit cell consisting of four arrayed ring resonant elements with two different sizes. Moreover, the investigation on surface current and two referential simulated structures confirm a principle for improving Q-factor.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  2. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38(7), L115–L121 (2005).
    [CrossRef]
  3. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]
  4. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
    [CrossRef]
  5. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  6. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
    [CrossRef]
  7. M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization Insensitivity,” J. Electromagn. Waves Appl. 24(2-3), 261–270 (2010).
    [CrossRef]
  8. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
    [CrossRef]
  9. L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
    [CrossRef]
  10. Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
    [CrossRef]
  11. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
    [CrossRef]
  12. C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
    [CrossRef] [PubMed]
  13. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [CrossRef]
  14. A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Opt. Express 17(24), 22108–22113 (2009).
    [CrossRef] [PubMed]
  15. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [CrossRef] [PubMed]
  16. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
    [CrossRef] [PubMed]

2014 (1)

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

2012 (2)

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
[CrossRef]

2011 (2)

2010 (2)

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization Insensitivity,” J. Electromagn. Waves Appl. 24(2-3), 261–270 (2010).
[CrossRef]

2009 (2)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Opt. Express 17(24), 22108–22113 (2009).
[CrossRef] [PubMed]

2008 (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2005 (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38(7), L115–L121 (2005).
[CrossRef]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

1935 (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Al-Naib, I.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[CrossRef]

Bitzer, A.

Born, N.

I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[CrossRef]

Chaker, M.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Chen, Z. C.

Chong, T. C.

Delprat, S.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Dmitriev, V. A.

M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization Insensitivity,” J. Electromagn. Waves Appl. 24(2-3), 261–270 (2010).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Feurer, T.

Fu, J. H.

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
[CrossRef]

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Giannini, V.

Giessen, H.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

Han, N. R.

Hanham, S. M.

Helm, H.

Hong, M. H.

Huang, Q.

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Jansen, C.

I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[CrossRef]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Kawakatsu, M. N.

M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization Insensitivity,” J. Electromagn. Waves Appl. 24(2-3), 261–270 (2010).
[CrossRef]

Klein, N.

Koch, M.

I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

Lederer, F.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Li, X.

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

Li, Y.

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

Liew, Y. F.

Lim, C. S.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Luk’yanchuk, B.

Luo, X. G.

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

Maier, S. A.

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38(7), L115–L121 (2005).
[CrossRef]

Meng, F. Y.

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
[CrossRef]

Merbold, H.

Morandotti, R.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Ng, B.

Ozaki, T.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Prosvirnin, S. L.

M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization Insensitivity,” J. Electromagn. Waves Appl. 24(2-3), 261–270 (2010).
[CrossRef]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Rocheleau, D.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Rockstuhl, C.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

Singh, R.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Tang, M.

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

Wallauer, J.

Walther, M.

Wang, D. C.

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Wu, Q.

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, L.

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
[CrossRef]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Adv. Mater. (1)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[CrossRef]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, “Polarization-independent broadband terahertz chiral metamaterials on flexible substrate,” Appl. Phys., A Mater. Sci. Process. 115(1), 57–62 (2014).
[CrossRef]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

J. Electromagn. Waves Appl. (1)

M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization Insensitivity,” J. Electromagn. Waves Appl. 24(2-3), 261–270 (2010).
[CrossRef]

J. Phys. B (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38(7), L115–L121 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys. 45(44), 445105 (2012).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Phys. Rev. Lett. (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the unit cell of the meta-molecule ring resonator.

Fig. 2
Fig. 2

The simulated results of transmission spectra of (a) the CRR and (b) the meta-molecule ring resonator. (c) The photograph of the fabricated sample. (d) The experimental results of transmission spectra of the meta-molecule ring resonator.

Fig. 3
Fig. 3

Far-field intensity distributions of (a) the zero-order diffracted wave and (b) first-order diffracted wave. (c) The diagram of the unit cell of the meta-molecule ring resonator.

Fig. 4
Fig. 4

The instantaneous distribution of the surface current in the rings of (a) the CRR and (b) the meta-molecule ring resonators excited by x-polarized microwaves at resonances.

Fig. 5
Fig. 5

The simulated results of the ring resonators with the unit cells consisting of (a) two horizontal arrayed different sized rings and (b) two vertical arrayed different sized rings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 2 = i 2 ( 2π g x ) 2 + j 2 ( 2π g y ) 2 ,

Metrics