Abstract

Based on multisphere Green’s function, we investigate the interaction between a dipole source and a hybrid nanoantenna. The parameter of radiation enhancement factor is introduced to characterize spontaneous emission enhancement and radiation efficiency simultaneously. We revisit the emission of silver dimers in the context of radiation enhancement factor. Then the hybrid of metallic nanoparticles (MNPs) and dielectric nanoparticles are designed for strong enhancement as well as high efficiency. Purcell factor over 2000 and radiation efficiency over 50% are achieved by the hybrid antenna. And Purcell factor above 900 with over 57% radiation efficiency is also reached for broadband operation. Such metallo-dielectric hybrid antenna may find potential applications in bright single photon sources and Raman spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of highly efficient metallo-dielectric patch antennas for single-photon emission

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet
Opt. Express 22(3) 2337-2347 (2014)

Metal-dielectric antennas for efficient photon collection from diamond color centers

Amir Karamlou, Matthew E. Trusheim, and Dirk Englund
Opt. Express 26(3) 3341-3352 (2018)

Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity

Guixin Zhu and Qinghua Liao
Opt. Express 26(24) 31391-31401 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  2. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
    [Crossref]
  3. L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
    [Crossref]
  4. I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1, 65–81 (2012).
    [Crossref]
  5. Y. G. Liu, W. C. H. Choy, W. Sha, and W. C. Chew, “Unidirectional and wavelength-selective photonic sphere-array nanoantennas,” Opt. Lett. 37, 2112–2114 (2012).
    [Crossref] [PubMed]
  6. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
    [Crossref] [PubMed]
  7. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref] [PubMed]
  8. A. Bonakdar and H. Mohseni, “Hybrid optical antenna with high directivity gain,” Opt. Lett. 38, 2726–2728 (2013).
    [Crossref] [PubMed]
  9. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref] [PubMed]
  10. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
    [Crossref] [PubMed]
  11. G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
    [Crossref] [PubMed]
  12. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
    [Crossref]
  13. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [Crossref] [PubMed]
  14. M. Agio and D. Cano, “Nano-optics: The Purcell factor of nanoresonators,” Nature Photonics 7, 674–675 (2013).
    [Crossref]
  15. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas–a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
    [Crossref] [PubMed]
  16. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
    [Crossref]
  17. A. P. Moneda and D. P. Chrissoulidis, “Dyadic Green’s function of a cluster of spheres,” J. Opt. Soc. Am. A 24, 3437 (2007).
    [Crossref]
  18. A. P. Moneda and D. P. Chrissoulidis, “Dyadic Green’s function of a sphere with an eccentric spherical inclusion,” J. Opt. Soc. Am. A 24, 1695–1703 (2007).
    [Crossref]
  19. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
    [Crossref]
  20. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser & Photonics Reviews 4, 499–516 (2009).
    [Crossref]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
    [Crossref]
  22. M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
    [Crossref]
  23. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
    [Crossref] [PubMed]
  24. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS nano 4, 3390–3396 (2010).
    [Crossref] [PubMed]
  25. E. D. Palik, Handbook of Optical Constants and Solids(Academic, 1985).

2013 (3)

M. Agio and D. Cano, “Nano-optics: The Purcell factor of nanoresonators,” Nature Photonics 7, 674–675 (2013).
[Crossref]

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

A. Bonakdar and H. Mohseni, “Hybrid optical antenna with high directivity gain,” Opt. Lett. 38, 2726–2728 (2013).
[Crossref] [PubMed]

2012 (7)

2011 (1)

L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

2010 (2)

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[Crossref] [PubMed]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

2009 (2)

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser & Photonics Reviews 4, 499–516 (2009).
[Crossref]

2008 (2)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
[Crossref]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[Crossref]

2007 (4)

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Agio, M.

M. Agio and D. Cano, “Nano-optics: The Purcell factor of nanoresonators,” Nature Photonics 7, 674–675 (2013).
[Crossref]

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[Crossref] [PubMed]

Aizpurua, J.

Alù, A.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[Crossref]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Belov, P. A.

Bharadwaj, P.

Bidault, S.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Bonakdar, A.

Bonod, N.

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

Cano, D.

M. Agio and D. Cano, “Nano-optics: The Purcell factor of nanoresonators,” Nature Photonics 7, 674–675 (2013).
[Crossref]

Chew, W. C.

Choy, W. C. H.

Chrissoulidis, D. P.

Devilez, A.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

Dignam, M.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[Crossref]

Esteban, R.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[Crossref]

Hughes, S.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser & Photonics Reviews 4, 499–516 (2009).
[Crossref]

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

Kaminski, F.

Kivshar, Y. S.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1, 65–81 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Koenderink, A. F.

Krasnok, A. E.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Liu, J.

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

Liu, Y. G.

Lu, G.

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

Mackowski, S.

Maksymov, I. S.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1, 65–81 (2012).
[Crossref]

Manga Rao, V. S. C.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser & Photonics Reviews 4, 499–516 (2009).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Miroshnichenko, A. E.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1, 65–81 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Mohseni, H.

Moneda, A. P.

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants and Solids(Academic, 1985).

Patterson, M.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

Perriat, P.

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Reza, A.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

Sáenz, J. J.

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Schmidt, M. K.

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
[Crossref]

Sha, W.

Shen, H.

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

Staude, I.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1, 65–81 (2012).
[Crossref]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
[Crossref]

Stout, B.

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

Suárez-Lacalle, I.

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
[Crossref]

van Hulst, N. F.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
[Crossref]

Van Vlack, C.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

Yao, P.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser & Photonics Reviews 4, 499–516 (2009).
[Crossref]

Zhang, T.

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

ACS nano (1)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS nano 4, 3390–3396 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Laser & Photonics Reviews (1)

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser & Photonics Reviews 4, 499–516 (2009).
[Crossref]

Nanophotonics (1)

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1, 65–81 (2012).
[Crossref]

Nanoscale (2)

G. Lu, J. Liu, T. Zhang, H. Shen, and P. Perriat, “Enhancing molecule fluorescence with asymmetrical plasmonic antenna,” Nanoscale 5, 6545–6551 (2013).
[Crossref] [PubMed]

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

Nature Photonics (3)

M. Agio and D. Cano, “Nano-optics: The Purcell factor of nanoresonators,” Nature Photonics 7, 674–675 (2013).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics 2, 234–237 (2008).
[Crossref]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (3)

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants and Solids(Academic, 1985).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)–(c) Purcell factors, radiation efficiencies and radiation enhancement factors for different radii of silver dimers with fixed gap of 10 nm; (d)–(f) the same parameters for different gap lengthes of silver dimers of 35 nm radius.
Fig. 2
Fig. 2 (a)–(c) The parameters as in Fig. 1 for different radii of dielectric spheres with 160 nm distance; (d)–(f) the same parameters for different distances of dielectric spheres with 75 nm radius.
Fig. 3
Fig. 3 (a) Peak radiation enhancement factors of antennas with different distances from the dielectric spheres to the dipole; (b) Purcell factor (blue solid line), radiation efficiency (green solid line) and radiation enhancement factor (blue dashed line) of antenna with 90 nm distance.
Fig. 4
Fig. 4 (a) The Purcell factors for different radii of dielectric spheres with fixed distance of 100 nm; (b) The Purcell factors for different distances of dielectric spheres of 70 nm radius.
Fig. 5
Fig. 5 Spatial distributions of electric field amplitude at radiation peaks of antennas with different distances from the dielectric sphere surface to the dipole. (a) and (b) antenna with 160 nm distance; (c) antenna with 200 nm distance; (d) antenna with 100 nm distance.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

× × G ( r r ) ω 2 c 2 ε ( r ) G ( r r ) = I δ ( r r )
G ( 0 s ) ( r , r ) = δ s 0 1 k s 2 r ^ r ^ δ ( r r ) + j k s 4 π v m n c m n [ δ s 0 F v , m n ( 1 ˜ ) ( k 0 r ) F v , m n ( 3 ˜ ) ( k 0 r ) + i F v , m n ( 3 ) ( k 0 r i ) A v , m n ( i ) ( r ) ]
G ( is ) ( r i , r i ) = δ si 1 k s 2 r ^ i r ^ i δ ( r i r i ) + j k s 4 π v m n c m n [ δ si F v , m n ( 1 ˜ ) ( k i r i ) F v , m n ( 3 ˜ ) ( k i r i ) + F v , m n ( 1 ) ( k i r i ) C v , m n ( i ) ( r ) ]
γ = 2 ω 3 h ¯ ε 0 | μ | 2 ρ ( r 0 , ω )
ρ ( r 0 , ω ) = 6 ω π c 2 [ n μ . Im { G ( r 0 , r 0 ; ω ) } n μ ]
F p ( r 0 , ω ) = n μ Im { G ( r 0 , r 0 ; ω ) } n μ n μ Im { G ( r 0 , r 0 ; ω ) } n μ
P t = π ω 2 12 ε 0 | μ | 2 ρ ( r 0 , ω )

Metrics