Abstract

Phase shifting diffraction interferometry (PSDI) was adapted to provide real-time feedback control of a laser-based chemical vapor deposition (LCVD) process with nanometer scale sensitivity. PSDI measurements of laser heated BK7 and fused silica substrates were used to validate a finite element model that accounts for both refractive index changes and displacement contributions to the material response. Utilizing PSDI and accounting for the kinetics of the modeled thermomechanical response, increased control of the LCVD process was obtained. This approach to surface tracking is useful in applications where extreme environments on the working surface require back-side optical probing through the substrate.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [CrossRef] [PubMed]
  2. J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
    [CrossRef]
  3. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
    [CrossRef]
  4. M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
    [CrossRef]
  5. J. W. Evans, G. Sommargren, B. A. Macintosh, S. Severson, and D. Dillon, “Effect of wavefront error on 10(-7) contrast measurements,” Opt. Lett. 31(5), 565–567 (2006).
    [CrossRef] [PubMed]
  6. G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
    [CrossRef]
  7. K. Onuma, T. Kameyama, and K. Tsukamoto, “In-situ study of surface phenomena by real-time phase-shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
    [CrossRef]
  8. Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).
  9. D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
    [CrossRef] [PubMed]
  10. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  11. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
    [CrossRef]
  12. M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of microstructural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35(9), 1311–1313 (2010).
    [CrossRef] [PubMed]
  13. T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
    [CrossRef]
  14. S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
    [CrossRef] [PubMed]
  15. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
    [CrossRef]
  16. “Schott Optical Glass datasheet” (2013).
  17. J. A. F. Vinsonneau, D. N. Shields, P. J. King, and K. J. Burnham, “Improved SI engine modelling techniques with application to fault detection,” Proc. IEEE Control Appl. 2, 719–724 (2002).
    [CrossRef]
  18. C. Duty, D. Jean, and W. J. Lackey, “Laser chemical vapour deposition: materials, modelling, and process control,” Int. Mater. Rev. 46(6), 271–287 (2001).
    [CrossRef]
  19. H. R. Philipp, in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, 1985), p. 762.
  20. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26(9), 1728–1731 (1987).
    [CrossRef] [PubMed]
  21. A. E. Siegman, Lasers (University Science Books, 1986).

2013 (3)

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

2012 (1)

2010 (3)

2009 (2)

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

2006 (1)

2002 (1)

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

2001 (2)

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[CrossRef]

C. Duty, D. Jean, and W. J. Lackey, “Laser chemical vapour deposition: materials, modelling, and process control,” Int. Mater. Rev. 46(6), 271–287 (2001).
[CrossRef]

1997 (1)

1994 (1)

K. Onuma, T. Kameyama, and K. Tsukamoto, “In-situ study of surface phenomena by real-time phase-shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[CrossRef]

1987 (1)

Barty, A.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Bass, I. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Bennett, T. D.

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[CrossRef]

Bisson, S. E.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Bradsher, L. S.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Burnham, K. J.

J. A. F. Vinsonneau, D. N. Shields, P. J. King, and K. J. Burnham, “Improved SI engine modelling techniques with application to fault detection,” Proc. IEEE Control Appl. 2, 719–724 (2002).
[CrossRef]

Carr, C. W.

Chen, C.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Chen, K. C.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Cooke, D.

Cooke, D. J.

Cross, D. A.

Dillon, D.

Dillon, D. R.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Draggoo, V. G.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Duty, C.

C. Duty, D. Jean, and W. J. Lackey, “Laser chemical vapour deposition: materials, modelling, and process control,” Int. Mater. Rev. 46(6), 271–287 (2001).
[CrossRef]

Elhadj, S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Evans, J. W.

Folta, J.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Geraghty, P.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Grigoropoulos, C.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

Guss, G. M.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Honig, J.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Huang, H.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Hughes, J. D.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Jean, D.

C. Duty, D. Jean, and W. J. Lackey, “Laser chemical vapour deposition: materials, modelling, and process control,” Int. Mater. Rev. 46(6), 271–287 (2001).
[CrossRef]

Johnson, G.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Johnson, M. A.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Kameyama, T.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In-situ study of surface phenomena by real-time phase-shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[CrossRef]

King, P. J.

J. A. F. Vinsonneau, D. N. Shields, P. J. King, and K. J. Burnham, “Improved SI engine modelling techniques with application to fault detection,” Proc. IEEE Control Appl. 2, 719–724 (2002).
[CrossRef]

Lackey, W. J.

C. Duty, D. Jean, and W. J. Lackey, “Laser chemical vapour deposition: materials, modelling, and process control,” Int. Mater. Rev. 46(6), 271–287 (2001).
[CrossRef]

Larkin, G.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Lee, D.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

Lee, Y. T.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Li, L.

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[CrossRef]

Macintosh, B. A.

Matthews, M. J.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
[CrossRef] [PubMed]

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of microstructural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35(9), 1311–1313 (2010).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

McLachlan, A. D.

Meyer, F. P.

Montesanti, R. C.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Moreno, K. A.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Negres, R. A.

Nguyen, A. Q. L.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Nguyen, N. Q.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Nielsen, N. D.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

Norton, M. A.

Nostrand, M.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Onuma, K.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In-situ study of surface phenomena by real-time phase-shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[CrossRef]

Peterson, J.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Phillion, D. W.

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
[CrossRef] [PubMed]

Ravizza, D.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Ravizza, F.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Settgast, R. R.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

Severson, S.

Shields, D. N.

J. A. F. Vinsonneau, D. N. Shields, P. J. King, and K. J. Burnham, “Improved SI engine modelling techniques with application to fault detection,” Proc. IEEE Control Appl. 2, 719–724 (2002).
[CrossRef]

Snell, F. J.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Sommargren, G.

Sommargren, G. E.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Soules, T. F.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

Sridharan, A.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

Stolken, J. S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of microstructural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35(9), 1311–1313 (2010).
[CrossRef] [PubMed]

Taranowski, M.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Tsukamoto, K.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In-situ study of surface phenomena by real-time phase-shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[CrossRef]

Vignes, R. M.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of microstructural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35(9), 1311–1313 (2010).
[CrossRef] [PubMed]

Vinsonneau, J. A. F.

J. A. F. Vinsonneau, D. N. Shields, P. J. King, and K. J. Burnham, “Improved SI engine modelling techniques with application to fault detection,” Proc. IEEE Control Appl. 2, 719–724 (2002).
[CrossRef]

Wegner, P.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Wegner, P. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Welday, B.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Wong, N.

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

Yang, S. T.

Yoo, J.-H.

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

Appl. Opt. (2)

Fusion Sci. Technol. (1)

Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, and D. W. Phillion, “Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces,” Fusion Sci. Technol. 55, 405–410 (2009).

Int. Mater. Rev. (1)

C. Duty, D. Jean, and W. J. Lackey, “Laser chemical vapour deposition: materials, modelling, and process control,” Int. Mater. Rev. 46(6), 271–287 (2001).
[CrossRef]

J. Am. Ceram. Soc. (1)

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

J. Appl. Phys. (2)

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[CrossRef]

J. Cryst. Growth (1)

K. Onuma, T. Kameyama, and K. Tsukamoto, “In-situ study of surface phenomena by real-time phase-shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (4)

J. Folta, M. Nostrand, J. Honig, N. Wong, F. Ravizza, P. Geraghty, M. Taranowski, G. Johnson, G. Larkin, D. Ravizza, J. Peterson, B. Welday, and P. Wegner, “Mitigation of laser damage on national ignition facility optics in volume production,” Proc. SPIE 8885, 88850Z (2013).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, S. Elhadj, G. M. Guss, A. Sridharan, N. D. Nielsen, J.-H. Yoo, D. Lee, and C. Grigoropoulos, “Localized planarization of optical damage using laser-based chemical vapor deposition,” Proc. SPIE 8885, 888526 (2013).
[CrossRef]

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002).
[CrossRef]

Other (5)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

“Schott Optical Glass datasheet” (2013).

J. A. F. Vinsonneau, D. N. Shields, P. J. King, and K. J. Burnham, “Improved SI engine modelling techniques with application to fault detection,” Proc. IEEE Control Appl. 2, 719–724 (2002).
[CrossRef]

H. R. Philipp, in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, 1985), p. 762.

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The PSDI measurement system is composed of an open air interferometer shown at the top of the diagram, a single mode fiber transport shown in the middle and a two fiber launch that creates a sheared interferogram of the sample on the camera. A separate control system (not illustrated) processes the interferogram and adjusts the LCVD process parameters in a feedback loop.

Fig. 2
Fig. 2

The software processing algorithm used as the feedback loop in the LCVD surface monitoring system.

Fig. 3
Fig. 3

Surface profile of laser heated fused silica derived from PSDI measurements (both x- and y-scales are in mm). The asymmetry from left to right is due to interferometry setup. The 2D phase plots show a region of interest that has been unwrapped and scaled to a height which would be accurate if the sample were at room temperature. Vertical lineouts through the surface profiles illustrate the shape of the expanded region.

Fig. 4
Fig. 4

Measured peak OPD (solid circles) as a function of laser power for BK7 (left panel) and fused silica (right panel) along with simulated total OPD (solid line), the thermal expansion component of the OPD (dashed line), and the refractive index component of the OPD (dotted line).

Fig. 5
Fig. 5

A plot of the height of a silica deposition as a function of time. The first 100 s show the height measured by PSDI if the thermal expansion of the material is not subtracted. From 100 to 1000 s, silica is deposited at a linear rate. After the laser exposure ends at 1000 s, the deposited material cools to its final profile. The inset image shows a surface plot of the final surface profile.

Fig. 6
Fig. 6

A small pit (green outline) in a fused silica sample to be filled by LCVD is aligned to the thermal bump caused by heating with the LCVD beam resulting in registration to an accuracy of a few microns.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ( nL )=ΔnL+ΔLn
ΔnL= 0 L dn dT [ T( r,z ) T ref ] dz
Q(r,z,t,T)= P(t)β(T) π r 0 2 exp(γ(T)z)exp[ -2 ( r r 0 ) 2 ]
ρ(T) C p (T) T t (κ(T)T)=Q(r,z,t,T)
σ=ρ 2 u t 2
σ=C:[εα(T T ref )I]
ε= 1 2 (u+ u T )
U ˜ [r][s]=  m=0 M1 n=0 N1 u ˜ [m][n] e i2πmr M e i2πns N
T ˜ [r][s]= exp{ iπ z 0 λ p 2 [ ( u α ) 2 + v 2 ] }
z 0 = z z R 1
u=[ 1 2 ,( 1 2 + 1 M ),( 1 2 + 2 M ),, 1 2 ]
v=[ 1 2 ,( 1 2 + 1 N ),( 1 2 + 2 N ),, 1 2 ]
α=cos( θ )
u ˜ [m][n]=  ( z R +1 ) MN r=0 M1 s=0 N1 U ˜ [r][s]T[r][s] e i2πmr M e i2πns N

Metrics