Abstract

We numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties. The proposed hybrid dielectric-plasmonic structure may open new avenues in the generation of deeply subwavelength intense optical sources, with direct applications in various domains such as data storage, non-linear optics, optical trapping and manipulation, microscopy, etc.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Quantum Electronics (John Wiley and Sons, 1989).
  2. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  4. V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  5. H. Rigneault, J. M Lourtioz, A. Delalande, and A. Levenson, “La Nanophotonique, Hermès Sciences, Paris,” (2005).
  6. E. Barakat, M. -P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012).
    [CrossRef]
  7. M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
    [CrossRef]
  8. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
    [CrossRef]
  9. N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
    [CrossRef] [PubMed]
  10. S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
    [CrossRef]
  11. P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  12. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  13. F. J. González and J. Alda, “Optical nanoantennas coupled to photonic crystal cavities and waveguides for near-field sensing,” Selected Topics in Quantum Electronics, IEEE Journal of 16, 446–449 (2010),
    [CrossRef]
  14. K. Terukazu, Y. Kadoya, and H. -F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
    [CrossRef]
  15. J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and directional optical nanoantennas,” J. Opt. Soc. Am. A 31, 388–393 (2014).
    [CrossRef]
  16. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19, 22292–22304 (2011).
    [CrossRef] [PubMed]
  17. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  18. A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18, A381–A394 (2010).
    [CrossRef] [PubMed]
  19. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
    [CrossRef] [PubMed]
  20. J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
    [CrossRef] [PubMed]
  21. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  22. L. Ferrier, P. R. Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, “3D integration of photonic crystal devices: vertical coupling with a silicon waveguide,” Opt. Express 18, 16162–16174 (2010).
    [CrossRef] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2014

2013

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

2012

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

E. Barakat, M. -P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012).
[CrossRef]

2011

2010

F. J. González and J. Alda, “Optical nanoantennas coupled to photonic crystal cavities and waveguides for near-field sensing,” Selected Topics in Quantum Electronics, IEEE Journal of 16, 446–449 (2010),
[CrossRef]

K. Terukazu, Y. Kadoya, and H. -F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

L. Ferrier, P. R. Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, “3D integration of photonic crystal devices: vertical coupling with a silicon waveguide,” Opt. Express 18, 16162–16174 (2010).
[CrossRef] [PubMed]

A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18, A381–A394 (2010).
[CrossRef] [PubMed]

2009

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

2008

2006

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

2005

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

1986

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Adibi, A.

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Akimov, A. V.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Alda, J.

F. J. González and J. Alda, “Optical nanoantennas coupled to photonic crystal cavities and waveguides for near-field sensing,” Selected Topics in Quantum Electronics, IEEE Journal of 16, 446–449 (2010),
[CrossRef]

Asano, T.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Ashkin, A.

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Bachelot, R.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Baida, F. I.

E. Barakat, M. -P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012).
[CrossRef]

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Barakat, E.

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Belarouci, A.

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Benyattou, T.

Bernal, M. -P.

E. Barakat, M. -P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012).
[CrossRef]

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Biagioni, P.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Chamanzar, M.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, S.

Courjal, N.

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

De Leon, N. P.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Delalande, A.

H. Rigneault, J. M Lourtioz, A. Delalande, and A. Levenson, “La Nanophotonique, Hermès Sciences, Paris,” (2005).

Dodson, S.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Drouard, E.

Dziedzic, J. M.

Eisler, H. -J.

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Englund, D. E.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Enoch, J. C.

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Ferrier, L.

Fischer, H.

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Forchel, A.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Fromm, D.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Geisler, P.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

González, F. J.

F. J. González and J. Alda, “Optical nanoantennas coupled to photonic crystal cavities and waveguides for near-field sensing,” Selected Topics in Quantum Electronics, IEEE Journal of 16, 446–449 (2010),
[CrossRef]

Haggui, M.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Harmsen, M.

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Hecht, B.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hofmann, H. -F.

K. Terukazu, Y. Kadoya, and H. -F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Huang, J. -S.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kadoya, Y.

K. Terukazu, Y. Kadoya, and H. -F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Kaiser, T.

Kamp, M.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Kern, J.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Kino, G.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kuipers, L.

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Lederer, F.

Letartre, X.

Levenson, A.

H. Rigneault, J. M Lourtioz, A. Delalande, and A. Levenson, “La Nanophotonique, Hermès Sciences, Paris,” (2005).

Li, S.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Lochel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Lourtioz, J. M

H. Rigneault, J. M Lourtioz, A. Delalande, and A. Levenson, “La Nanophotonique, Hermès Sciences, Paris,” (2005).

Lukin, M. D.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Martin, O. J.

H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef] [PubMed]

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Moerner, W.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Nieuwstadt, V.

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Noda, S.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

Nusse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Park, H.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Pertsch, T.

Peuker, R.

plain, J.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Pohl, D.

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Prangsma, F. B.

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Qi, J.

Rigneault, H.

H. Rigneault, J. M Lourtioz, A. Delalande, and A. Levenson, “La Nanophotonique, Hermès Sciences, Paris,” (2005).

Rockstuhl, C.

Romeo, P. R.

Roussey, M.

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Salut, R.

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Sandtke, J. A. H

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Schuck, P.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Segerink, R. H.

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Shields, B. J.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Sonnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Terukazu, K.

K. Terukazu, Y. Kadoya, and H. -F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

Van Labeke, D.

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Viktorovitch, P.

Weinmann, P.

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Xiong, Q.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (John Wiley and Sons, 1989).

Yu, C. L.

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Appl. Phys. Lett.

M. Roussey, M. -P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

J. -S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010).
[CrossRef] [PubMed]

Nat. Mater.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Nat. Photon.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

K. Terukazu, Y. Kadoya, and H. -F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Lett.

S. Dodson, M. Haggui, R. Bachelot, J. plain, S. Li, and Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” Phys. Chem. Lett. 4, 496–501 (2013).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

V. Nieuwstadt, J. A. H Sandtke, M. Harmsen, R. H. Segerink, F. B. Prangsma, J. C. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

N. P. De Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef] [PubMed]

Science

P. Muhlschlegel, H. -J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Selected Topics in Quantum Electronics, IEEE Journal of

F. J. González and J. Alda, “Optical nanoantennas coupled to photonic crystal cavities and waveguides for near-field sensing,” Selected Topics in Quantum Electronics, IEEE Journal of 16, 446–449 (2010),
[CrossRef]

Other

H. Rigneault, J. M Lourtioz, A. Delalande, and A. Levenson, “La Nanophotonique, Hermès Sciences, Paris,” (2005).

A. Yariv, Quantum Electronics (John Wiley and Sons, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the modeled PC structure illuminated at normal incidence from the Si substrate.

Fig. 2
Fig. 2

(a): Normalized near-field spectral response at 50 nm above the center of the PC structure. A rather sharp resonance is obtained at λPC = 1272.56 nm. (b): Diffracted zero order reflection (red solid line) and transmission (blue dashed line) spectra of the PC when it is illuminated at normal incidence by a linearly polarized Gaussian beam from the substrate side.

Fig. 3
Fig. 3

Spatial distributions of the three electric field components at the PC resonance (λPC=1272.56 nm) recorded at 50 nm above the structure. White circles denote the hole positions.

Fig. 4
Fig. 4

(a) Schematic view of the modeled BA deposited on the multilayer, (b) Near-field spectral responses at 10 nm above the BA center for an x-polarized beam (red solid line) and for a y-polarized one (blue dashed-dotted line). As expected, the resonance is only obtained when the electric field of the incoming light is parallel to the two metallic triangles direction. The green dashed line corresponds to the spectra of a self-suspended BA in water in the case of an x-polarized illumination. (c) and (d) : Distributions of the electric intensity (in arbitrary units) for the two polarizations also recorded at 10 nm above the BA center showing large enhancement at the gap zone only in the case of x-polarization.

Fig. 5
Fig. 5

(a) Normalized near-field spectrum of the combined structure (solid red line). The spectrum of the PC without the BA is also plotted (blue dashed line) for comparison. (b) Zero order diffracted light (transmission and reflection) of the hybrid structure (BA on top of the PC).

Fig. 6
Fig. 6

Spatial distributions of the electric field components (amplitude fifth root) above the BA+PC structure.

Fig. 7
Fig. 7

a) Enhancement factor and resonance wavelength as a function of the distance d between the BA and the PC. b) Distribution of the electric intensity (fifth root) for the PC without the BA in the xOz plane. c–e) Distributions of the electric intensity (fifth root) in the xOz plane of the whole structure (PC+BA) for different values of the distance d.

Metrics