Abstract

A new type of CMOS compatible photodetector, exhibiting intrinsic light-to-time conversion, is proposed. Its main objective is to start the time-to-digital conversion directly at its output, thereby avoiding the cumbersome analog processing. The operation starts with an internal charge integration, followed by a positive feedback, and a sharp switching-current. The device, consisting of a deeply depleted MOS structure controlling the conduction of a forward-based PN diode, is presented and its operation explained. TCAD simulations are used to show the effects of semiconductor parameters and bias conditions. The photodetector and its detection circuit are designed and fabricated in a 0.18µm CMOS process. Measurements of this new device under different biasing and illumination conditions show highly promising properties in terms of linearity, internal gain, and noise performances.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
    [CrossRef] [PubMed]
  2. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  3. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005).
    [CrossRef] [PubMed]
  4. L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008).
    [CrossRef]
  5. L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009).
    [CrossRef]
  6. D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
    [CrossRef] [PubMed]
  7. B. Nakhkoob, S. Ray, and M. M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Opt. Express 20(10), 11256–11270 (2012).
    [CrossRef] [PubMed]
  8. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008).
    [CrossRef] [PubMed]
  9. D. Matolin, C. Posch, and R. Wohlgenannt, “True Correlated Double Sampling and Comparator Design for Time-Based Image sensors,” IEEE International Symposium of Circuits and Systems. ISCAS, 1269–1272 (2009).
    [CrossRef]
  10. J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).
  11. A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
    [CrossRef]
  12. T.-H. Tsai and R. Hornsey, “Analysis of Dynamic Range, Linearity, and Noise of a Pulse-Frequency Modulation Pixel,” IEEE Trans. Electron. Dev. 59(10), 2675–2681 (2012).
    [CrossRef]
  13. X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006).
    [CrossRef]
  14. A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range,” IEEE Trans. Electron. Dev. 52(12), 2591–2601 (2005).
    [CrossRef]
  15. H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006).
    [CrossRef]
  16. D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).
  17. S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
    [CrossRef]

2013 (1)

D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).

2012 (2)

T.-H. Tsai and R. Hornsey, “Analysis of Dynamic Range, Linearity, and Noise of a Pulse-Frequency Modulation Pixel,” IEEE Trans. Electron. Dev. 59(10), 2675–2681 (2012).
[CrossRef]

B. Nakhkoob, S. Ray, and M. M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Opt. Express 20(10), 11256–11270 (2012).
[CrossRef] [PubMed]

2011 (1)

D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
[CrossRef] [PubMed]

2010 (1)

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

2009 (4)

A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
[CrossRef]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009).
[CrossRef]

2008 (2)

L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008).
[CrossRef]

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008).
[CrossRef] [PubMed]

2006 (2)

X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006).
[CrossRef]

H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006).
[CrossRef]

2005 (2)

1996 (1)

J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).

Astrom, A.

J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).

Baets, R.

Belenky, A.

A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
[CrossRef]

Bermak, A.

D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
[CrossRef] [PubMed]

A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range,” IEEE Trans. Electron. Dev. 52(12), 2591–2601 (2005).
[CrossRef]

Bogaerts, W.

Bouzerdoum, A.

A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range,” IEEE Trans. Electron. Dev. 52(12), 2591–2601 (2005).
[CrossRef]

Brouckaert, J.

Cassan, E.

Catrysse, P. B.

Chen, D. G.

D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
[CrossRef] [PubMed]

Chen, L.

Crozat, P.

Damlencourt, J.-F.

Dumon, P.

Eklund, J.-E.

J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).

ElGamal, A.

H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006).
[CrossRef]

Eltoukhy, H.

H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006).
[CrossRef]

Fédéli, J.-M.

Fesenmaier, C. C.

Fish, A.

A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
[CrossRef]

Gulak, G.

D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).

Harik, L.

L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009).
[CrossRef]

L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008).
[CrossRef]

Hella, M. M.

Ho, D.

D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).

Hornsey, R.

T.-H. Tsai and R. Hornsey, “Analysis of Dynamic Range, Linearity, and Noise of a Pulse-Frequency Modulation Pixel,” IEEE Trans. Electron. Dev. 59(10), 2675–2681 (2012).
[CrossRef]

X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006).
[CrossRef]

Huo, Y.

Kayal, M.

L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009).
[CrossRef]

L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008).
[CrossRef]

Kitchen, A.

A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range,” IEEE Trans. Electron. Dev. 52(12), 2591–2601 (2005).
[CrossRef]

Krull, U. J.

D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).

Laval, S.

Lecunff, Y.

Lee, S.-K.

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

Lipson, M.

Marris-Morini, D.

Matolin, D.

D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
[CrossRef] [PubMed]

Nakhkoob, B.

Noor, M. O.

D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).

Nötzel, R.

Osmond, J.

Park, H.-J.

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

Posch, C.

D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
[CrossRef] [PubMed]

Ray, S.

Roelkens, G.

Salama, K.

H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006).
[CrossRef]

Sallese, J. M.

L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009).
[CrossRef]

L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008).
[CrossRef]

Seo, Y.-H.

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

Sim, J.-Y.

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

Smit, M.

Spivak, A.

A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
[CrossRef]

Suh, Y.

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

Svensson, C.

J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).

Taillaert, D.

Tsai, T.-H.

T.-H. Tsai and R. Hornsey, “Analysis of Dynamic Range, Linearity, and Noise of a Pulse-Frequency Modulation Pixel,” IEEE Trans. Electron. Dev. 59(10), 2675–2681 (2012).
[CrossRef]

Van Thourhout, D.

Vivien, L.

Wang, X.

X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006).
[CrossRef]

Wong, W.

X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006).
[CrossRef]

Yadid-Pecht, O.

A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
[CrossRef]

IEEE J. Solid-State Circuits (2)

S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010).
[CrossRef]

H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006).
[CrossRef]

IEEE Sens. J. (1)

L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009).
[CrossRef]

IEEE Trans. Biomed. Circuits Sys. (1)

D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011).
[CrossRef] [PubMed]

IEEE Trans. Circuits Syst. I. (1)

D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).

IEEE Trans. Electron. Dev. (4)

A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009).
[CrossRef]

T.-H. Tsai and R. Hornsey, “Analysis of Dynamic Range, Linearity, and Noise of a Pulse-Frequency Modulation Pixel,” IEEE Trans. Electron. Dev. 59(10), 2675–2681 (2012).
[CrossRef]

X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006).
[CrossRef]

A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range,” IEEE Trans. Electron. Dev. 52(12), 2591–2601 (2005).
[CrossRef]

IEEE Trans. Very Large Scale Integr. (VLSI). Sys. (1)

J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).

Opt. Express (5)

Solid-State Electron. (1)

L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008).
[CrossRef]

Other (1)

D. Matolin, C. Posch, and R. Wohlgenannt, “True Correlated Double Sampling and Comparator Design for Time-Based Image sensors,” IEEE International Symposium of Circuits and Systems. ISCAS, 1269–1272 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Comparison between a standard SPE [1] and an implementation with our device.

Fig. 2
Fig. 2

Structure of the device.

Fig. 3
Fig. 3

Anode current versus time after switching Vp and Vg from 0 V to 0.8 V and 1.2 V respectively. The transient simulation is repeated for different substrate doping.

Fig. 4
Fig. 4

Space charge (Qs) at the different times highlighted in Fig. 2 (i.e. (a) 10ns, (b), 30ns, (c) 100ns).

Fig. 5
Fig. 5

Electron (left) and hole (right) current densities at the times highlighted in Fig. 4 (i.e. (a) 10ns, (b) 30ns, (c) 100ns)

Fig. 6
Fig. 6

Anode current versus time after switching Vp from 0 to 0.8 V and Vg from 0 to 1 or 2 V respectively. The transient simulation is repeated for different light intensities.

Fig. 7
Fig. 7

Space charge (Qs) after switching Vg from 0 V to 2 V (a) and from 0 V to 1 V (b).

Fig. 8
Fig. 8

Fabricated ASIC and a simplified schematic of one of its photodetectors.

Fig. 9
Fig. 9

Light-modulated pulse width measurements. Ch.1: Clock signal from MCU, Ch.2: ASIC Output signal.

Fig. 10
Fig. 10

Measured triggering time versus light intensity.

Fig. 11
Fig. 11

Measured jitter noise versus light intensity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 T = 1 T 0 +α I light
n= I light λ hc
1 T = 1 T 0 + 1 N λ hc QEA α I light = 1 T 0 + n N QEA

Metrics