Abstract

We propose and experimentally demonstrate a new scheme for photonic generation of microwave frequency shift keying (FSK) signal by employing one single-drive Mach–Zehnder modulator (MZM). In the proposed method, an electrical signal with different radio frequency (RF) amplitudes and direct current (DC) components for bit ‘0’ and bit ‘1’ is generated. After amplification, the signal is fed into a single-drive MZM which is biased at the quadrature and null points of its transmission curve for bit ‘0’ and bit ‘1’, respectively. Due to the different RF amplitudes, a microwave FSK signal can be obtained after photodetection, where the space frequency is the same as the RF frequency and the mark frequency is twice as large as the RF frequency. The feasibility of the proposed scheme is verified by a proof-of-concept experiment. 5/10-GHz and 10/20-GHz microwave FSK signals with different bit rates are successfully demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of RF binary digitally modulated signals

Xia Feng, Lianshan Yan, Hengyun Jiang, Jia Ye, Yan Pan, Lin Jiang, Wei Pan, Bin Luo, and Can Liu
Opt. Express 25(16) 19043-19051 (2017)

A novel approach to photonic generation of RF binary digital modulation signals

Peng Xiang, Xiaoping Zheng, Hanyi Zhang, Yuquan Li, and Yinfang Chen
Opt. Express 21(1) 631-639 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. N. Gomes, M. Morant, A. Alphones, B. Cabon, J. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8(2), 156–178 (2009).
    [Crossref]
  5. T. Berceli and P. Herczfeld, “Microwave photonics-a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
    [Crossref]
  6. J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  7. J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
    [Crossref]
  8. Q. Chang, T. Ye, and Y. Su, “Generation of optical carrier suppressed-differential phase shift keying (OCS-DPSK) format using one dual-parallel Mach-Zehnder modulator in radio over fiber systems,” Opt. Express 16(14), 10421–10426 (2008).
    [Crossref] [PubMed]
  9. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  10. M. Li and J. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
    [Crossref]
  11. Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
    [Crossref]
  12. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
    [Crossref] [PubMed]
  13. Z. Tang, T. Zhang, F. Zhang, and S. Pan, “Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 38(24), 5365–5368 (2013).
    [Crossref] [PubMed]
  14. Y. Zhang, K. Xu, R. Zhu, J. Li, X. B. Hong, and J. Lin, “Photonic generation of M-QAM/M-ASK signals at microwave/millimeter-wave band using dual-drive Mach–Zehnder modulators with unequal amplitudes,” J. Lightwave Technol. 26(15), 2604–2610 (2008).
    [Crossref]
  15. Q. Chang, Y. Tian, J. Gao, T. Ye, Q. Li, and Y. Su, “Generation and transmission of optical carrier suppressed-optical differential (quadrature) phase-shift keying (OCS-OD(Q)PSK) signals in radio over fiber systems,” J. Lightwave Technol. 26(15), 2611–2618 (2008).
    [Crossref]
  16. T. Ye, C. Yan, Q. Chang, and Y. Su, “An Optical (Q)PSK-RF-signal transmitter based on two cascaded Mach-Zehnder modulators,” Opt. Commun. 281(18), 4648–4652 (2008).
    [Crossref]
  17. Y. Zhang, K. Xu, R. Zhu, J. Li, J. Wu, X. Hong, and J. Lin, “Photonic DPASK/QAM signal generation at microwave/millimeter-wave band based on an electro-optic phase modulator,” Opt. Lett. 33(20), 2332–2334 (2008).
    [Crossref] [PubMed]
  18. C. B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
    [Crossref] [PubMed]
  19. A. Weiner, E. Hamidi, F. Ferdous, D. Leaird, C. Long, A. Metcalf, M. Song, V. Supradeepa, V. Torres-Company, and R. Wu, “Broadband optical processing techniques for ultrabroadband RF,” in Proc. OFC2012, paper. OW4H. 3.
    [Crossref]
  20. P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express 21(1), 631–639 (2013).
    [Crossref] [PubMed]
  21. W. Shieh, S. X. Yao, G. Lutes, and L. Maleski, “An all-optical microwave mixer with gain,” in Proc. OFC1997, paper. ThG1.
  22. Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
    [Crossref]
  23. L. L. Wang and T. Kowalcyzk, “A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators,” J. Lightwave Technol. 28(11), 1703–1706 (2010).
    [Crossref]

2013 (3)

2011 (3)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

M. Li and J. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

2010 (2)

T. Berceli and P. Herczfeld, “Microwave photonics-a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

L. L. Wang and T. Kowalcyzk, “A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators,” J. Lightwave Technol. 28(11), 1703–1706 (2010).
[Crossref]

2009 (2)

2008 (5)

2007 (3)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
[Crossref]

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[Crossref] [PubMed]

2006 (2)

A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

2002 (1)

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Alphones, A.

Berceli, T.

T. Berceli and P. Herczfeld, “Microwave photonics-a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

Cabon, B.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chang, Q.

Chen, Y.

Chi, H.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Choi, C. S.

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Choi, W. Y.

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Csörnyei, M.

Gao, J.

Gomes, N.

Herczfeld, P.

T. Berceli and P. Herczfeld, “Microwave photonics-a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

Hong, X.

Hong, X. B.

Huang, C. B.

Iezekiel, S.

Jia, Z.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Jiang, H. Y.

Kowalcyzk, T.

Leaird, D. E.

Lethien, C.

Li, J.

Li, M.

M. Li and J. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Li, Q.

Li, W.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Li, Y.

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Lin, J.

Luo, B.

Mitchell, J.

Morant, M.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, S.

Pan, W.

Seeds, A.

Seo, Y. K.

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Stöhr, A.

Su, Y.

Tang, Z.

Tian, Y.

Wang, L. L.

Wang, T.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Weiner, A. M.

Williams, K.

Wu, J.

Xiang, P.

Xu, K.

Yan, C.

T. Ye, C. Yan, Q. Chang, and Y. Su, “An Optical (Q)PSK-RF-signal transmitter based on two cascaded Mach-Zehnder modulators,” Opt. Commun. 281(18), 4648–4652 (2008).
[Crossref]

Yan, L. S.

Yao, J.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

M. Li and J. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Ye, J.

Ye, T.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yu, J.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, T.

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Zhang, Y.

Zheng, X.

Zhu, R.

Zou, X.

IEEE Microw. Wirel. Compon. Lett. (1)

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19(3), 140–142 (2007).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

T. Berceli and P. Herczfeld, “Microwave photonics-a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

M. Li and J. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (1)

T. Ye, C. Yan, Q. Chang, and Y. Su, “An Optical (Q)PSK-RF-signal transmitter based on two cascaded Mach-Zehnder modulators,” Opt. Commun. 281(18), 4648–4652 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (2)

A. Weiner, E. Hamidi, F. Ferdous, D. Leaird, C. Long, A. Metcalf, M. Song, V. Supradeepa, V. Torres-Company, and R. Wu, “Broadband optical processing techniques for ultrabroadband RF,” in Proc. OFC2012, paper. OW4H. 3.
[Crossref]

W. Shieh, S. X. Yao, G. Lutes, and L. Maleski, “An all-optical microwave mixer with gain,” in Proc. OFC1997, paper. ThG1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Architecture of microwave FSK signal generation in optical domain.
Fig. 2
Fig. 2 (a) Principle of the electrical signal generation. (a-i) Unipolar ASK signal mixing with an RF clock, (a-ii) combination of the output signal from the mixer and the OOK signal. (b) Generation of microwave FSK signal through EOE conversion. (b-i) RF amplitudes and bias points for bit ‘0’ and bit ‘1’, respectively, (b-ii) optical spectra and electrical spectra after photodetection for bit ‘0’ and bit ‘1’, respectively, (b-iii) waveform of the generated microwave FSK signal.
Fig. 3
Fig. 3 Simulation results with 10-GHz RF clock at bit rates of 625 Mb/s, 1.25 Gb/s, and 2.5 Gb/s, respectively.
Fig. 4
Fig. 4 Simulation results with 20-GHz RF clock at bit rates of 1.25 Gb/s, 2.5 Gb/s, and 5 Gb/s, respectively.
Fig. 5
Fig. 5 Waveforms of the generated electrical signals, microwave FSK signals, and the electrical spectra of the microwave FSK signals with 5-GHz RF clock at bit rates of 312.5 Mb/s, 625 Mb/s, and 1.25 Gb/s, respectively.
Fig. 6
Fig. 6 Waveforms of the generated electrical signals, microwave FSK signals, and the electrical spectra of the microwave FSK signals with 10-GHz RF clock at bit rates of 625 Mb/s, 1.25 Gb/s, and 2.5 Gb/s, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E in = Data(t) ¯ V RF0 cos( ω f t)+Data(t) V RF1 cos( ω f t),
E out0 E 0 { J 0 (α)cos( π 4 )cos( ω 0 t) J 1 (α)sin( π 4 )[cos( ω 0 + ω f )t+cos( ω 0 ω f )t] } = E 0 2 2 { J 0 (α)cos( ω 0 t) J 1 (α)[cos( ω 0 + ω f )t+cos( ω 0 ω f )t] },
i AC0 | E 0 | 2 2 [2 J 0 (α) J 1 (α)cos( ω f t)+ J 1 (α) 2 cos(2 ω f t)].
E out1 E 0 { J 1 (β)[cos( ω 0 + ω f )t+cos( ω 0 ω f )t] },
i AC1 | E 0 | 2 [ J 1 (β) 2 cos(2 ω f t)].
A=| J 0 (α) J 1 (α) | J 1 (β) 2 >> J 1 (α) 2 2 .
i out { | E 0 | 2 Acos( ω f t) | E 0 | 2 Acos(2 ω f t) for bit 0' for bit 1' .

Metrics