Abstract

We use nanosphere lithography in combination with two evaporation steps to create bow-tie like infrared antennas with small gaps. The angle of the sample with respect to the evaporation source is changed between two evaporation steps resulting in a displacement of the respective antenna arrays and, therefore, in decreased antenna-gaps. Furthermore, we demonstrate the gap-dependency of surface-enhanced infrared absorption (SEIRA) spectroscopy using the absorption band of the natural SiO2-layer of the silicon substrate and antennas with different gap size. A multi-oscillator-model is used to describe the Fano-like spectral coupling of the antenna resonances with the SiO2 absorption band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
    [CrossRef]
  2. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]

2010

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

2009

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Enders, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Nagao, T.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

Neubrech, F.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

Pucci, A.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

Weber, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

J. Phys. Chem. C

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[CrossRef]

Nat. Photonics

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sample preparation process: 1. Nanosphere deposition, 2. First evaporation with tilting angle –Φ, 3. Second evaporation with tilting angle + Φ, 4. Removal of spheres, (b) SEM image of double triangles prepared with 3 μm spheres and tilting angles of −5°/+5°, the red and blue triangles illustrate the two shifted array patterns, the red arrow marks the shift-axis.

Fig. 2
Fig. 2

(a) Polarization dependent spectra of structures prepared with 2 μm spheres and evaporated under −5°/+5°. (b) Illustration of the coupled harmonic oscillator model (c) Detail of the unpolarized spectrum with a fitted two-oscillator model (red) and its two single oscillators (green and blue).

Fig. 3
Fig. 3

Spectrum of double-antennas matched to the SiO2 band, prepared with 3 μm spheres and tilting angles of 0°/5° and −5°/+5°, resulting in gap sizes of 406 nm and 205 nm, respectively. (a)-(b) Measurements (solid black), three-oscillator model fit (solid red) and the corresponding single oscillators A2a/b (blue), B2a/b (green) and SiO2 (yellow) are shown. The red dashed line is given by the antenna oscillators without the coupling to the SiO2 oscillator. The insets show the difference between fit (solid line) and calculation without SiO2 coupling, in the range from 750 cm−1 to 1750 cm−1. (c)-(d) Model oscillators as before and new calculated, spectrally optimized, oscillator A2a/b,best (solid blue) to predict the ideal coupling between antenna and SiO2 band. The spectra with (solid red) and without (dashed red) coupling to the SiO2 oscillator are shown. The insets give the theoretically optimized difference spectra.

Fig. 4
Fig. 4

SiO2 absorption calculated as difference between a fit with three oscillators and the respective calculation without the oscillator corresponding to the SiO2 absorption.

Tables (1)

Tables Icon

Table 1 Model-calculation results and parameters

Metrics