Abstract

We use nanosphere lithography in combination with two evaporation steps to create bow-tie like infrared antennas with small gaps. The angle of the sample with respect to the evaporation source is changed between two evaporation steps resulting in a displacement of the respective antenna arrays and, therefore, in decreased antenna-gaps. Furthermore, we demonstrate the gap-dependency of surface-enhanced infrared absorption (SEIRA) spectroscopy using the absorption band of the natural SiO2-layer of the silicon substrate and antennas with different gap size. A multi-oscillator-model is used to describe the Fano-like spectral coupling of the antenna resonances with the SiO2 absorption band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  2. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  3. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  4. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  5. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [Crossref]
  6. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  7. H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007).
    [Crossref] [PubMed]
  8. F. Le Kundu, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
    [Crossref]
  9. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
    [Crossref]
  10. F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
    [Crossref] [PubMed]
  11. H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
    [Crossref] [PubMed]
  12. M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
    [Crossref] [PubMed]
  13. P. Steinmann and J. M. R. Weaver, “Fabrication of sub-5,” J. Vac. Sci. Technol. B 22(6), 3178 (2004).
    [Crossref]
  14. O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
    [Crossref] [PubMed]
  15. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [Crossref] [PubMed]
  16. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
    [Crossref]
  17. U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
    [Crossref]
  18. H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
    [Crossref]
  19. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
    [Crossref]
  20. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
    [Crossref]
  21. J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
    [Crossref] [PubMed]
  22. J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
    [Crossref]
  23. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
    [Crossref] [PubMed]
  24. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  25. C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
    [Crossref]
  26. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography - A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [Crossref]
  27. C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Lett. 3(7), 939–943 (2003).
    [Crossref]
  28. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
    [Crossref] [PubMed]
  29. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
    [Crossref]
  30. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]

2013 (2)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

2012 (2)

M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

2011 (2)

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

2010 (4)

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

2009 (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

2008 (5)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

F. Le Kundu, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

2007 (1)

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007).
[Crossref] [PubMed]

2005 (3)

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

2004 (1)

P. Steinmann and J. M. R. Weaver, “Fabrication of sub-5,” J. Vac. Sci. Technol. B 22(6), 3178 (2004).
[Crossref]

2003 (1)

C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Lett. 3(7), 939–943 (2003).
[Crossref]

2002 (1)

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography - A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

1982 (1)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

1981 (1)

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[Crossref]

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Altug, H.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Bardhan, R.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

Bona, G.-L.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Burger, S.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

De La Chapelle, M. L.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Deckman, H. W.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

Di Fabrizio, E.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Duan, H.

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Dunsmuir, J. H.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

Duyne, R. P. V.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Enders, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fischer, H.

Fischer, U. C.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[Crossref]

Frank, B.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Fromm, D.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Giersig, M.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
[Crossref] [PubMed]

Giessen, H.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Glaczynska, H.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
[Crossref] [PubMed]

Hafner, C.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Halas, N. J.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

F. Le Kundu, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007).
[Crossref] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Härtling, T.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Hartung, A.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

Haynes, C.

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Lett. 3(7), 939–943 (2003).
[Crossref]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Hoffmann, J. M.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Hong, S.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Hu, H.

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Huck, C.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Hulteen, J.

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography - A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Im, H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Jefimovs, K.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Kandulski, W.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
[Crossref] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Karthäuser, S.

M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
[Crossref] [PubMed]

Katzmann, J.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Kosiorek, A.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
[Crossref] [PubMed]

Kumar, K.

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Kundu, J.

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007).
[Crossref] [PubMed]

Lassiter, J. B.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

Le Kundu, F.

F. Le Kundu, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Lindquist, N. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Manheller, M.

M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
[Crossref] [PubMed]

Martin, O. J. F.

Maß, T. W. W.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

McFarland, A.

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Moerner, W.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Mukherjee, S.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nagao, T.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

Neubrech, F.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Nordlander, P.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

F. Le Kundu, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

Oh, S.-H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Richter, J.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Scholder, O.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Schuck, P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Sennhauser, U.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Shen, Z.

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Shorubalko, I.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Smith, M.

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Sobhani, H.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

Steinmann, P.

P. Steinmann and J. M. R. Weaver, “Fabrication of sub-5,” J. Vac. Sci. Technol. B 22(6), 3178 (2004).
[Crossref]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Taubner, T.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

Toma, A.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Toury, T.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Trellenkamp, S.

M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
[Crossref] [PubMed]

Van Duyne, R.

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Lett. 3(7), 939–943 (2003).
[Crossref]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography - A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Wang, H.

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007).
[Crossref] [PubMed]

Waser, R.

M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
[Crossref] [PubMed]

Weaver, J. M. R.

P. Steinmann and J. M. R. Weaver, “Fabrication of sub-5,” J. Vac. Sci. Technol. B 22(6), 3178 (2004).
[Crossref]

Weber, D.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

Yang, J. K. W.

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Yin, X.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zhao, J.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Zingsheim, H. P.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[Crossref]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

ACS Nano (3)

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

Chem. Phys. Lett. (1)

F. Le Kundu, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

J. Phys. Chem. B (3)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

C. Haynes, A. McFarland, M. Smith, J. Hulteen, and R. Van Duyne, “Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

J. Phys. Chem. C (3)

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117(21), 11311–11316 (2013).
[Crossref]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. Vac. Sci. Technol. (1)

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography - A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. Steinmann and J. M. R. Weaver, “Fabrication of sub-5,” J. Vac. Sci. Technol. B 22(6), 3178 (2004).
[Crossref]

Nano Lett. (3)

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Lett. 3(7), 939–943 (2003).
[Crossref]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

M. Manheller, S. Trellenkamp, R. Waser, and S. Karthäuser, “Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography,” Nanotechnology 23(12), 125302 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Phys. Rev. Lett. (2)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. De La Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Small (1)

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1(4), 439–444 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sample preparation process: 1. Nanosphere deposition, 2. First evaporation with tilting angle –Φ, 3. Second evaporation with tilting angle + Φ, 4. Removal of spheres, (b) SEM image of double triangles prepared with 3 μm spheres and tilting angles of −5°/+5°, the red and blue triangles illustrate the two shifted array patterns, the red arrow marks the shift-axis.

Fig. 2
Fig. 2

(a) Polarization dependent spectra of structures prepared with 2 μm spheres and evaporated under −5°/+5°. (b) Illustration of the coupled harmonic oscillator model (c) Detail of the unpolarized spectrum with a fitted two-oscillator model (red) and its two single oscillators (green and blue).

Fig. 3
Fig. 3

Spectrum of double-antennas matched to the SiO2 band, prepared with 3 μm spheres and tilting angles of 0°/5° and −5°/+5°, resulting in gap sizes of 406 nm and 205 nm, respectively. (a)-(b) Measurements (solid black), three-oscillator model fit (solid red) and the corresponding single oscillators A2a/b (blue), B2a/b (green) and SiO2 (yellow) are shown. The red dashed line is given by the antenna oscillators without the coupling to the SiO2 oscillator. The insets show the difference between fit (solid line) and calculation without SiO2 coupling, in the range from 750 cm−1 to 1750 cm−1. (c)-(d) Model oscillators as before and new calculated, spectrally optimized, oscillator A2a/b,best (solid blue) to predict the ideal coupling between antenna and SiO2 band. The spectra with (solid red) and without (dashed red) coupling to the SiO2 oscillator are shown. The insets give the theoretically optimized difference spectra.

Fig. 4
Fig. 4

SiO2 absorption calculated as difference between a fit with three oscillators and the respective calculation without the oscillator corresponding to the SiO2 absorption.

Tables (1)

Tables Icon

Table 1 Model-calculation results and parameters

Metrics