Abstract

In the exposure process of photolithography, a free-form lens is designed and fabricated for UV-LED (Ultraviolet Light-Emitting Diode). Thin film metallic glasses (TFMG) are adopted as UV reflection layers to enhance the irradiance and uniformity. The Polydimethylsiloxane (PDMS) with high transmittance is used as the lens material. The 3-D fast printing is attempted to make the mold of the lens. The results show that the average irradiance can be enhanced by 6.5~6.7%, and high uniformity of 85~86% can be obtained. Exposure on commercial thick photoresist using this UV-LED system shows 3~5% dimensional deviation, lower than the 6~8% deviation for commercial mercury lamp system. This current system shows promising potential to replace the conventional mercury exposure systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Tsai, Y. J. Chen, and K. C. Huang, “Fluorescence image excited by a scanning UV-LED light,” Opt. Rev. 20(2), 198–201 (2013).
    [CrossRef]
  2. R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
    [CrossRef]
  3. J. K. Kim, S. J. Paik, F. Herrault, and M. G. Allen, “UV-LED lithography for 3-D high aspect ratio microstructure patterning,” 14th Solid State Sensors, Actuators, and Microsystems Workshop, 481–484 (2012).
  4. Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
    [CrossRef]
  5. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [CrossRef] [PubMed]
  6. H. J. Huang, “A novel LED lighting module using patternable design concept for underwater illumination,” Department of Systems and Naval Mechatronic Engineering, NCKU, Ph. D Thesis (2012).
  7. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
    [CrossRef]
  8. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [CrossRef] [PubMed]
  9. J. Rubinstein and G. Wolansky, “Intensity control with a free-form lens,” J. Opt. Soc. Am. A 24(2), 463–469 (2007).
    [CrossRef] [PubMed]
  10. W. Situ, Y. Han, H. Li, and Y. Luo, “Combined feedback method for designing a free-form optical system with complicated illumination patterns for an extended LED source,” Opt. Express 19(S5Suppl 5), A1022–A1030 (2011).
    [CrossRef] [PubMed]
  11. M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19(S3Suppl 3), A225–A233 (2011).
    [CrossRef] [PubMed]
  12. C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
    [CrossRef]
  13. H. S. Chou, J. C. Huang, and L. W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,” Surf. Coat. Tech. 205(2), 587–590 (2010).
    [CrossRef]
  14. T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
    [CrossRef]
  15. Matlab, 7.1.0, February 2010, The MathWorks, Natick, Massachusetts.
  16. Pro/E, WILDFIRE 5.0, October 2010, Needhamm Massachusetts.
  17. FRED optical engineering, 7.1.01, Photon Engineering, http://www.photonengr.com .
  18. American National Standards Institute (ANSI) IT7, 215–1992, http://www.ansi.org .

2013 (1)

H. Y. Tsai, Y. J. Chen, and K. C. Huang, “Fluorescence image excited by a scanning UV-LED light,” Opt. Rev. 20(2), 198–201 (2013).
[CrossRef]

2012 (1)

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

2011 (3)

2010 (3)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[CrossRef] [PubMed]

H. S. Chou, J. C. Huang, and L. W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,” Surf. Coat. Tech. 205(2), 587–590 (2010).
[CrossRef]

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

2009 (1)

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

J. Rubinstein and G. Wolansky, “Intensity control with a free-form lens,” J. Opt. Soc. Am. A 24(2), 463–469 (2007).
[CrossRef] [PubMed]

Allen, M. G.

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

Cassarly, W. J.

Chang, L. W.

H. S. Chou, J. C. Huang, and L. W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,” Surf. Coat. Tech. 205(2), 587–590 (2010).
[CrossRef]

Chen, J. L.

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

Chen, Y. C.

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

Chen, Y. J.

H. Y. Tsai, Y. J. Chen, and K. C. Huang, “Fluorescence image excited by a scanning UV-LED light,” Opt. Rev. 20(2), 198–201 (2013).
[CrossRef]

Choi, S. O.

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

Chou, H. S.

H. S. Chou, J. C. Huang, and L. W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,” Surf. Coat. Tech. 205(2), 587–590 (2010).
[CrossRef]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Ding, Y.

Doskolovich, L. L.

Fournier, F. R.

Gu, P. F.

Han, Y.

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Hornung, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Hsu, J. H.

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

Hu, T. T.

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

Huang, J. C.

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

H. S. Chou, J. C. Huang, and L. W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,” Surf. Coat. Tech. 205(2), 587–590 (2010).
[CrossRef]

Huang, K. C.

H. Y. Tsai, Y. J. Chen, and K. C. Huang, “Fluorescence image excited by a scanning UV-LED light,” Opt. Rev. 20(2), 198–201 (2013).
[CrossRef]

Ji, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Kazanskiy, N. L.

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Kuan, S. Y.

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

Lee, C. J.

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

Li, H.

Liu, C. F.

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

Liu, K. H.

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

Liu, X.

Liu, Z.

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

Luo, Y.

Moeller, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Moiseev, M. A.

Moormann, C.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Nieh, T. G.

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

Pan, C. T.

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

Plachetka, U.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Rolland, J. P.

Rubinstein, J.

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Situ, W.

Tsai, H. Y.

H. Y. Tsai, Y. J. Chen, and K. C. Huang, “Fluorescence image excited by a scanning UV-LED light,” Opt. Rev. 20(2), 198–201 (2013).
[CrossRef]

van de Laar, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

van Eekelen, J.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Verschuuren, M. A.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Wolansky, G.

Wu, X.

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

Yoon, Y. K.

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

Zhao, Y.

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

Zheng, Z. R.

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Zhao, Y. K. Yoon, S. O. Choi, X. Wu, Z. Liu, and M. G. Allen, “Three dimensional metal pattern transfer for replica molded microstructures,” Appl. Phys. Lett. 94(2), 023301 (2009).
[CrossRef]

T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Appl. Phys. Lett. 101(1), 011902 (2012).
[CrossRef]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[CrossRef]

J. Mater. Eng. Perform. (1)

C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, “Optical Film for LED with Triangular-Pyramidal ArrayUsing Size-Reducible Embossing Method,” J. Mater. Eng. Perform. 20(9), 1544–1553 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5-8), 963–967 (2010).
[CrossRef]

Opt. Express (4)

Opt. Rev. (1)

H. Y. Tsai, Y. J. Chen, and K. C. Huang, “Fluorescence image excited by a scanning UV-LED light,” Opt. Rev. 20(2), 198–201 (2013).
[CrossRef]

Surf. Coat. Tech. (1)

H. S. Chou, J. C. Huang, and L. W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,” Surf. Coat. Tech. 205(2), 587–590 (2010).
[CrossRef]

Other (6)

J. K. Kim, S. J. Paik, F. Herrault, and M. G. Allen, “UV-LED lithography for 3-D high aspect ratio microstructure patterning,” 14th Solid State Sensors, Actuators, and Microsystems Workshop, 481–484 (2012).

H. J. Huang, “A novel LED lighting module using patternable design concept for underwater illumination,” Department of Systems and Naval Mechatronic Engineering, NCKU, Ph. D Thesis (2012).

Matlab, 7.1.0, February 2010, The MathWorks, Natick, Massachusetts.

Pro/E, WILDFIRE 5.0, October 2010, Needhamm Massachusetts.

FRED optical engineering, 7.1.01, Photon Engineering, http://www.photonengr.com .

American National Standards Institute (ANSI) IT7, 215–1992, http://www.ansi.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Schematic of UV-LED exposure system.

Fig. 2
Fig. 2

The schematic diagram of normal vector corresponding to the incident UV radiation vector and refracted radiation vector.

Fig. 3
Fig. 3

Schematic of construction of lens curve.

Fig. 4
Fig. 4

The influence of the amount of intervals to curve of lens.

Fig. 5
Fig. 5

The radar chart of UV radiant intensity distribution curve of single UV-LED.

Fig. 6
Fig. 6

The ray trace diagram of lens combined with TFMG reflective layer.

Fig. 7
Fig. 7

Schematic diagram of the covering angle of TFMG reflective layer.

Fig. 8
Fig. 8

Reflectivity of Al-based (Al76Ni4Y2Cu20 in at%) metallic glasses.

Fig. 9
Fig. 9

(a) ABS resin mold fabricated by 3-D fast printing and (b) the roughness of the ABS mold is less than100 nm.

Fig. 10
Fig. 10

Transmittance measurement of PDMS & PMMA materials.

Fig. 11
Fig. 11

PDMS lens was cast from the 3-D fast printing mold.

Fig. 12
Fig. 12

Measure position of uniformity measurement.

Fig. 13
Fig. 13

UV-LEDs array (a) Single UV-LED (b) 3-set UV-LEDs (c) 4-set UV-LEDs (d) (4 + 1)-set UV-LEDs (e) 5-set UV-LEDs (f) (5 + 1)-set UV-LEDs (g) 6-set UV-LEDs and (h) (6 + 1)-set UV-LEDs.

Fig. 14
Fig. 14

Intensity distribution curve of 5-set UV-LEDs arranged into a regular pentagon.

Fig. 15
Fig. 15

Simulated average irradiance and uniformity of bare UV-LEDs array.

Fig. 16
Fig. 16

Simulated average irradiance and uniformity of PDMS lens with different coverage angle of reflective layer.

Fig. 17
Fig. 17

PDMS lens with TFMG reflector for 5-set UV-LEDs (a) uniformity of lens with TFMG reflective layer, (b) irradiance of lens with TFMG reflective layer.

Fig. 18
Fig. 18

UV irradiance of UV-LEDs with PDMS lens exposure system.

Fig. 19
Fig. 19

Comparison of the exposure result on AZ4260 photoresist (a) mask pattern (b) using mercury lamp exposure (c) using UV-LEDs with PDMS lens and TFMG exposure.

Tables (1)

Tables Icon

Table 1 Specifications of UV-LED

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ I s (θ)= I o cos m (θ) m= ln2 ln(cos θ 0.5 )
I s (θ)= I 0 cos(θ) (m=1)
Φ source (θ)= 0 θ I s ( θ )dΩ=2π 0 θ I s ( θ ) sin θ d θ
Φ target (y)= 0 y E t ( y )dA=2π 0 y E t ( y ) y d y
Φ source (θ)= Φ target (y)
Φ source (θ)=2π 0 90/k I s ( θ )sin θ d θ =2π 0 y E t (y') y'dy'
[ n 1 2 + n 2 2 2 n 1 n 2 ( O I ) ] 1 2 × N = n 2 O n 1 I
ΔU+=| ( U Max U Avg )/ U Avg |
ΔU=| ( U Min U Avg )/ U Avg |
ANSI Uniformity=(1largest of{ ΔU+,ΔU })×100%

Metrics