Abstract

We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light reflected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eismann, Hyperspectral Remote Sensing (SPIE, 2012).
  2. A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
    [CrossRef]
  3. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
    [CrossRef]
  4. M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng. 52(6), 061302 (2013).
    [CrossRef]
  5. C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
    [CrossRef]
  6. M. Diem, P. R. Griffiths, and J. M. Chalmers, eds., Vibrational Spectroscopy for Medical Diagnosis (Wiley, 2008).
  7. K. Yeh, M. Schulmerich, and R. Bhargava, “Mid-infrared microspectroscopic imaging with a quantum cascade laser,” Proc. SPIE 8726, 87260E (2013).
    [CrossRef]
  8. A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
    [CrossRef] [PubMed]
  9. P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
    [CrossRef] [PubMed]
  10. R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
    [CrossRef] [PubMed]
  11. N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
    [CrossRef] [PubMed]
  12. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
    [CrossRef]
  13. Daylight Solutions, Inc., www.daylightsolutions.com ; Block Engineering LLC, www.blockeng.com .
  14. B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
    [CrossRef]
  15. P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
    [CrossRef]
  16. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
    [CrossRef] [PubMed]
  17. P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
    [CrossRef]
  18. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
    [CrossRef] [PubMed]
  19. A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).
    [CrossRef] [PubMed]
  20. M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
    [CrossRef]
  21. B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
    [CrossRef]

2013

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng. 52(6), 061302 (2013).
[CrossRef]

K. Yeh, M. Schulmerich, and R. Bhargava, “Mid-infrared microspectroscopic imaging with a quantum cascade laser,” Proc. SPIE 8726, 87260E (2013).
[CrossRef]

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

2012

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

2011

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

2010

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

2009

P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
[CrossRef] [PubMed]

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

2008

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

2007

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[CrossRef] [PubMed]

2005

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

2002

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
[CrossRef]

Aidam, R.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Audet, R. M.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Bartick, E. G.

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[CrossRef] [PubMed]

Belkin, M. A.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Berger, R.

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Bernacki, B. E.

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng. 52(6), 061302 (2013).
[CrossRef]

Bhargava, R.

K. Yeh, M. Schulmerich, and R. Bhargava, “Mid-infrared microspectroscopic imaging with a quantum cascade laser,” Proc. SPIE 8726, 87260E (2013).
[CrossRef]

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

Bour, D. P.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Bronner, W.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Bylund, Q.

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

Capasso, F.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
[CrossRef]

Capasso, F. A.

Cho, A. Y.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
[CrossRef]

Colonero, C.

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Corzine, S. W.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Costa, J.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

Crane, N. J.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[CrossRef] [PubMed]

Degreif, K.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Diehl, L.

DiLiberto, M.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

Fernandez, D. C.

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

Fuchs, F.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Furstenberg, R.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

Gmachl, C.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
[CrossRef]

Gokden, B.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

Goyal, A. K.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

Gregg, M.

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Huffman, S.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[CrossRef] [PubMed]

Hufler, G. E.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Hugger, S.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Jeys, T.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

Jones, R. M.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

Kansky, J.

Kelly, M.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Kendziora, C. A.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

Kinzer, M.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Lee, B. G.

Levin, I. W.

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

Losch, R.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Margalit, Y.

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

McGill, R. A.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

Menzel, S.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

Meyer, E.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

Model, J.

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Mooney, D.

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Mukherjee, A.

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

Ng, P. H.

P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
[CrossRef] [PubMed]

Nguyen, V.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

Papantonakis, M.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

Perlman, R. S.

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[CrossRef] [PubMed]

Pfluegl, C.

Pflugl, C.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Pflügl, C.

Phillips, M. C.

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng. 52(6), 061302 (2013).
[CrossRef]

Prasanna, M.

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

Rauter, P.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

Reedy, B.

P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
[CrossRef] [PubMed]

Ringdahl, E.

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

Sanchez, A.

Schnurer, F.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Schulmerich, M.

K. Yeh, M. Schulmerich, and R. Bhargava, “Mid-infrared microspectroscopic imaging with a quantum cascade laser,” Proc. SPIE 8726, 87260E (2013).
[CrossRef]

Schultz, K.

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

Shatrovoy, O.

Sivco, D. L.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
[CrossRef]

Spencer, M.

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

Tahtouh, M.

P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
[CrossRef] [PubMed]

Tihan, T.

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

Turner, G.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

Turner, G. W.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

Tyrrell, B.

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

Walker, S.

P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
[CrossRef] [PubMed]

Wang, C. A.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[CrossRef] [PubMed]

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

Wey, J.

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

Yang, Q.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

Yeh, K.

K. Yeh, M. Schulmerich, and R. Bhargava, “Mid-infrared microspectroscopic imaging with a quantum cascade laser,” Proc. SPIE 8726, 87260E (2013).
[CrossRef]

Zhang, H. A.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

Anal. Bioanal. Chem.

P. H. Ng, S. Walker, M. Tahtouh, and B. Reedy, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394(8), 2039–2048 (2009).
[CrossRef] [PubMed]

R. Bhargava, R. S. Perlman, D. C. Fernandez, I. W. Levin, and E. G. Bartick, “Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(8), 2069–2075 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, B. Gokden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[CrossRef]

IEEE J. Quantum Electron.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[CrossRef]

J. Biomed. Opt.

A. Mukherjee, Q. Bylund, M. Prasanna, Y. Margalit, and T. Tihan, “Spectroscopic imaging of serum proteins using quantum cascade lasers,” J. Biomed. Opt. 18(3), 036011 (2013).
[CrossRef] [PubMed]

J. Forensic Sci.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[CrossRef] [PubMed]

Opt. Eng.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, K. Degreif, and F. Schnurer, “Imaging standoff detection of explosives using widely tunable mid-infrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[CrossRef]

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng. 52(6), 061302 (2013).
[CrossRef]

Opt. Express

Phys. Today

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34 (2002).
[CrossRef]

Proc. SPIE

M. Kelly, R. Berger, C. Colonero, M. Gregg, J. Model, D. Mooney, and E. Ringdahl, “Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays,” Proc. SPIE 5902, 59020J (2005).
[CrossRef]

B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl, K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s Law scaling in focal plane readout design,” Proc. SPIE 6900, 69000W (2008).
[CrossRef]

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE 8373, 83732H (2012).
[CrossRef]

K. Yeh, M. Schulmerich, and R. Bhargava, “Mid-infrared microspectroscopic imaging with a quantum cascade laser,” Proc. SPIE 8726, 87260E (2013).
[CrossRef]

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE 8018, 80180N (2011).
[CrossRef]

Other

M. Eismann, Hyperspectral Remote Sensing (SPIE, 2012).

M. Diem, P. R. Griffiths, and J. M. Chalmers, eds., Vibrational Spectroscopy for Medical Diagnosis (Wiley, 2008).

Daylight Solutions, Inc., www.daylightsolutions.com ; Block Engineering LLC, www.blockeng.com .

Supplementary Material (1)

» Media 1: AVI (4099 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photomicrograph of laser array. Each laser in the array is comprised of a DBR section coupled to a tapered section with each section being individually addressable. The tapered section is driven with a current pulse to achieve lasing while the DBR section remains unpumped. (b) Peak output power versus current for each of the 15 lasers in the array. (c) Normalized emission spectra for each laser in the array. (d) Demonstration of fine tuning of the wavelength by pre-biasing the DBR section. For these measurements, the spectrometer resolution is ~0.5 cm−1.

Fig. 2
Fig. 2

(a) Photograph of QCL array bonded to a copper heat sink with attached cylindrical microlens to collimate the emission in the transverse (fast) dimension. (b) Wavelength-beam-combining configuration that utilizes an f = 100 mm transform lens and 75 g/mm diffraction grating. (c) Far-field profile after the diffraction grating of laser #14. (d) Pointing error in the WBC dimension for each element in the array. The error bars represent the FW1/e2 beam divergence and the peak-to-peak pointing error is 0.53 mrad.

Fig. 3
Fig. 3

(a) A conventional thermal image of a hand which is illuminated by a QCL. The single laser pulse during the 100-μs-long integration period is too weak to be visible. (b) Synchronous detection image that utilizes time gating to integrate over 50 × 2-μs-long pulses while the laser is on to increase the active return by a factor of 50 compared to the conventional image. (c) On-chip background subtraction is combined with time gating to extract only the active return. As compared to Fig. 3(b), the passive background is subtracted on-chip such that the stationary signal is nulled.

Fig. 4
Fig. 4

(a) Reflectance images of a diffusely reflecting gold sample that is partially coated with a film of DEP at a range of 5 meters. Images are at two wavelengths that are either weakly or strongly absorbed in the DEP. (b) The measured reflection spectrum compared with calculations for a film thickness of 7.04 μm. The measured data was derived from a hyperspectral image cube with 27 frames. A spectral step size of ~2.3 cm−1 (which is finer than the ~4.5 cm−1 spacing between adjacent lasers in the QCL array) was achieved by thermally tuning the wavelength of each laser by pre-biasing the DBR section.

Fig. 5
Fig. 5

(a) Photograph of the experimental setup in which the sample is mounted to a rotating chopper wheel and is illuminated by two lasers from the beam-combined QCL array. The scattered radiation is captured by the DFPA camera. (b) Closer view of the sample mounted to the chopper wheel. (c) Reflection spectra of bulk KClO3 and sand powders as measured using an FTIR spectrometer. Indicated are the illumination wavelengths which are added and subtracted at the DFPA camera. (d) Timing diagram for the QCL array and DFPA camera showing how the signal is added at the DFPA when the sample is illuminated at λ1, and then subtracted when illuminated at λ2. The total measurement time is 4.1 μs.

Fig. 6
Fig. 6

Comparison of differential reflectance images (top) and visible images (bottom) for the particles when (a) stationary and (b) moving at linear speeds of 10 m/s (Media 1). The differential reflectance images show KClO3 particles with a net positive value which is rendered as red. The sand particles have a net negative value which is rendered as blue. Since the image acquisition time for the differential reflectance image is only 4.1 μs, the image does not significantly blur even when the sample is moving at speeds of 10 m/s. The visible image, however, with the acquisition time of 100 μs is significantly blurred.

Metrics