Abstract

Two-dimensional (2D) and three-dimensional (3D) transparent screens can be created using lens-array holographic optical elements (HOEs). Lens-array HOEs can be used to perform 2D and 3D imaging for Bragg matched images while maintaining the transparent properties of the images in the background scenes. 2D or 3D imaging on the proposed screen is determined by the relative size of an elemental-lens on the lens-array to a pixel on the projected image. The 2D and 3D displays on the lens-array HOEs are implemented by the diffusion of light on each elemental-lens and by taking advantage of reflection-type integral imaging, respectively. We constructed an HOE recording setup and recorded two lens-array HOEs having different optical specifications, permitting them to function as 2D and 3D transparent screens. Experiments regarding 2D and 3D imaging on the proposed transparent screens are carried out and the viewing characteristics in both cases are discussed. The experimental results show that the proposed screens are capable of providing 2D and 3D images properly while satisfying the see-through properties.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  2. D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virt. Real. 9, 1–20 (2010).
  3. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  4. J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “SpaceTop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.
    [Crossref]
  5. S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
    [Crossref]
  6. M. K. Hedili, M. O. Freeman, and H. Urey, “Microlens array-based high-gain screen design for direct projection head-up displays,” Appl. Opt. 52(6), 1351–1357 (2013).
    [Crossref] [PubMed]
  7. M. K. Hedili, M. O. Freeman, and H. Urey, “Transmission characteristics of a bidirectional transparent screen based on reflective microlenses,” Opt. Express 21(21), 24636–24646 (2013).
    [Crossref] [PubMed]
  8. C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
    [Crossref] [PubMed]
  9. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [Crossref] [PubMed]
  10. J. Hong, S.-W. Min, and B. Lee, “Integral floating display systems for augmented reality,” Appl. Opt. 51(18), 4201–4209 (2012).
    [Crossref] [PubMed]
  11. K. Hong, J. Hong, J. Yeom, and B. Lee, “Two-dimensional and three-dimensional see-through screen using holographic optical elements,” in Digest of Topical Meeting on Biomedical Optics and 3-D Imaging (Optical Society of America, 2012), paper DM2C.6.
  12. K. Hong, J. Yeom, and B. Lee, “Integral imaging using color multiplexed holographic optical element,” in International Conference on 3D Imaging (IC3D) (IEEE, 2012), pp. 1–4.
    [Crossref]
  13. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [Crossref] [PubMed]
  14. T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109–112.
  15. T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), pp. 311.
    [Crossref]
  16. J. H. Lee, J. Park, D. Nam, S. Y. Choi, D. S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]
  17. F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
    [Crossref]
  18. T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
    [Crossref]
  19. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [Crossref] [PubMed]
  20. T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
    [Crossref]
  21. R. Bitterli, T. Scharf, H. P. Herzig, W. Noell, N. de Rooij, A. Bich, S. Roth, K. J. Weible, R. Voelkel, M. Zimmermann, and M. Schmidt, “Fabrication and characterization of linear diffusers based on concave micro lens arrays,” Opt. Express 18(13), 14251–14261 (2010).
    [Crossref] [PubMed]
  22. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45(36), 9132–9139 (2006).
    [Crossref] [PubMed]
  23. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
    [Crossref] [PubMed]
  24. S. Park, B. Song, and S. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea 14(2), 121–126 (2010).
    [Crossref]
  25. H. J. Coufal, G. T. Sincerbox, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2000).
  26. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  27. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  28. J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48(3), 504–511 (2009).
    [Crossref] [PubMed]
  29. http://www.grapac.co.jp/eng_hals/index.html
  30. http://www.fresneltech.com/

2014 (2)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

2011 (2)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

2010 (4)

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virt. Real. 9, 1–20 (2010).

R. Bitterli, T. Scharf, H. P. Herzig, W. Noell, N. de Rooij, A. Bich, S. Roth, K. J. Weible, R. Voelkel, M. Zimmermann, and M. Schmidt, “Fabrication and characterization of linear diffusers based on concave micro lens arrays,” Opt. Express 18(13), 14251–14261 (2010).
[Crossref] [PubMed]

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

S. Park, B. Song, and S. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea 14(2), 121–126 (2010).
[Crossref]

2009 (3)

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[Crossref] [PubMed]

J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48(3), 504–511 (2009).
[Crossref] [PubMed]

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

2008 (1)

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

2007 (1)

2006 (2)

2004 (1)

T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
[Crossref]

Ando, H.

Anisetti, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Arai, J.

Bich, A.

Bitterli, R.

Bruder, F. K.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Byun, C.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chakmakjian, S. H.

T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
[Crossref]

Chang, S. I.

Chen, C.-F.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Choi, S. Y.

Damiani, E.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

de Rooij, N.

DeLacy, B. G.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Deuber, F.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Fäcke, T.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Freeman, M. O.

Furht, B.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Hagen, R.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Hahn, J.

Hedili, M. K.

Herzig, H. P.

Hönel, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Hong, J.

Hong, K.

Hsu, C. W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Hwang, C.-S.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Im, S.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Jang, C.

Javidi, B.

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Jurbergs, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Kashiwada, S.

Kim, C. Y.

Kim, H.

Kim, J. J.

Kim, Y.

Lee, B.

Lee, B. K.

Lee, J. H.

Lee, J.-I.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Lee, K.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Liao, Y.-S.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Lin, T.-W.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Martinez-Corral, M.

Martínez-Cuenca, R.

Min, S.

Min, S.-W.

Morris, G. M.

T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
[Crossref]

Nakamura, K.

Nam, D.

Navarro, H.

Noell, W.

Nojiri, Y.

Oh, M. S.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Okano, F.

Okui, M.

Park, D. S.

Park, J.

Park, J. H.

Park, S.

Park, S.-H.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Poelman, R.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virt. Real. 9, 1–20 (2010).

Qiu, W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Rölle, T.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Roth, S.

Ryu, M.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Saavedra, G.

Sales, T. R. M.

T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
[Crossref]

Scharf, T.

Schertler, D. J.

T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
[Crossref]

Schmidt, M.

Shapira, O.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Shin, D. H.

Shin, J.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Song, B.

Takaki, Y.

Urano, Y.

Urey, H.

van Krevelen, D. W. F.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virt. Real. 9, 1–20 (2010).

Voelkel, R.

Weible, K. J.

Weiser, M. S.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Yang, J.-J.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Yang, S.

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Yeom, J.

Yoon, J. B.

Zhen, B.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Zimmermann, M.

Adv. Mater. (1)

S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater. 21(6), 678–682 (2009).
[Crossref]

Appl. Opt. (5)

Int. J. Virt. Real. (1)

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virt. Real. 9, 1–20 (2010).

J. Micromech. Microeng. (1)

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

J. Opt. Soc. Korea (1)

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Nat. Commun. (1)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (2)

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusers,” Proc. SPIE 5530, 133–140 (2004).
[Crossref]

Other (9)

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109–112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), pp. 311.
[Crossref]

J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “SpaceTop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.
[Crossref]

K. Hong, J. Hong, J. Yeom, and B. Lee, “Two-dimensional and three-dimensional see-through screen using holographic optical elements,” in Digest of Topical Meeting on Biomedical Optics and 3-D Imaging (Optical Society of America, 2012), paper DM2C.6.

K. Hong, J. Yeom, and B. Lee, “Integral imaging using color multiplexed holographic optical element,” in International Conference on 3D Imaging (IC3D) (IEEE, 2012), pp. 1–4.
[Crossref]

H. J. Coufal, G. T. Sincerbox, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2000).

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

http://www.grapac.co.jp/eng_hals/index.html

http://www.fresneltech.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principles of 2D/3D imaging on a conventional lens-array: (a) 2D imaging when the lens size is equal to or smaller than the projected pixel size, and (b) 3D imaging when the lens size is at least twice as large as the projected pixel size.

Fig. 2
Fig. 2

(a) Schematic diagram for recording a lens-array HOE and (b) optical parameters of the recorded lens-array HOE.

Fig. 3
Fig. 3

Photograph of an experimental setup for recording the lens-array HOEs for transparent screens.

Fig. 4
Fig. 4

Recorded lens-array HOEs for (a) 2D and (b) 3D transparent screens.

Fig. 5
Fig. 5

Measurement of the diffusion angle Ω on the lens-array HOE for the 2D transparent screen: (a) schematic diagram of optical paths of light, and (b) photograph of the measurement setup.

Fig. 6
Fig. 6

Photograph of the experimental arrangements used for displaying 2D or 3D images on the lens-array HOE as a transparent screen in the presence of a background object ‘cube’.

Fig. 7
Fig. 7

Images for the 2D transparent HOE screen: (a) 2D images projected to the screen, and (b) see-through 2D images displayed on the screen with a real object ‘cube’ for a background.

Fig. 8
Fig. 8

Images of the 3D transparent HOE screen: (a) elemental images projected to the screen, and (b) perspective see-through 3D images around the screen captured from five different viewing directions with a background object ‘cube’.

Tables (2)

Tables Icon

Table 1 Reference lens-arrays used to record the lens-array HOEs for 2D/3D transparent screens

Tables Icon

Table 2 Exposed energies and diffraction efficiencies for red, green, and blue color HOEs in implementing 2D/3D transparent screens

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

p lens < p proj for 2D transparent screen,
p lens 2 p proj for 3D transparent screen.
Ω=2 tan 1 ( p lens 2f ).
R av = p lens p proj Ω .
R ah = p lens p proj Ω .

Metrics