Abstract

In this paper, a model for the analysis and design of a reflective Arrayed Waveguide Grating is presented. The device consists of one half of a regular AWG where each arm waveguide in the array is terminated with a phase shifter and a Sagnac loop reflector. By individually adjusting the phase shifter and Sagnac reflectivity in each arm, additional functionality to that previously reported in the literature is attained, since this enables tailoring the spectral response of the AWG. The design and experimental demonstration of Gaussian pass-band shape devices in Silicon-on-Insulator technology are reported. Methods to obtain flattened and arbitrary spectral responses are described and supported by simulation results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8(6), 948–964 (1990).
    [CrossRef]
  2. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
    [CrossRef]
  3. E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
    [CrossRef]
  4. M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]
  5. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 1041–1135 (1991).
    [CrossRef]
  6. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
    [CrossRef]
  7. P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.
  8. R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photon. J. 5(2), 2400123 (2013).
    [CrossRef]
  9. D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).
  10. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013).
    [CrossRef] [PubMed]
  11. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [CrossRef] [PubMed]
  12. L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
    [CrossRef]
  13. Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
    [CrossRef]
  14. J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
    [CrossRef]
  15. D. Dai, X. Fu, Y. Shi, and S. He, “Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors,” Opt. Lett. 35(15), 2594–2596 (2010).
    [CrossRef] [PubMed]
  16. L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).
  17. K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013).
    [CrossRef] [PubMed]
  18. Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).
  19. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
    [CrossRef] [PubMed]
  20. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011).
    [CrossRef]
  21. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002).
    [CrossRef]
  22. B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” in Wiley Series in Pure and Applied Optics, B. E. A. Saleh, ed. 2nd ed, (Wiley Interscience, 2007).
  23. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
    [CrossRef]
  24. L. B. Soldano and E. C. M Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13(4), 615–627 (1995).
    [CrossRef]
  25. M. Bachmann, P. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
    [CrossRef] [PubMed]
  26. P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
    [CrossRef]
  27. J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightw. Technol. 19(5), 700–707 (2001).
    [CrossRef]
  28. S. Jeong and K. Morito, “Novel optical 90° hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI coupler,” J. Lightwave Technol. 28(9), 1323–1331 (2010).
    [CrossRef]
  29. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
    [CrossRef]
  30. P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
    [CrossRef]
  31. E. Kleijn, M. K. Smit, and X. Leijtens, “New analytical arrayed waveguide grating model,” J. Lightw. Technol. 31(20), 3309–3314 (2013).
    [CrossRef]
  32. W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  33. G. Beelen and H. F. Bulthuis, “Arrayed waveguide grating with reduced channel passband asymmetry,” Gemfire Corporation, US Patent 7,492,991, (2007).
  34. S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
    [CrossRef] [PubMed]
  35. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
    [CrossRef]
  36. W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003).
    [CrossRef]
  37. M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
    [CrossRef]
  38. J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
    [CrossRef]
  39. A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004).
    [CrossRef]
  40. E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation,” Opt. Express 20(20), 22660–22668 (2012).
    [CrossRef] [PubMed]
  41. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
    [CrossRef]
  42. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
    [CrossRef]
  43. P. Muñoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
    [CrossRef] [PubMed]
  44. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
    [CrossRef]
  45. K. Okamoto, “Fundamentals of optical waveguides,” in Optics and Photonics Series, 2nd. ed, (Academic Press, 2005).
  46. “Fourier transform pairs,” available on-line at http://www.thefouriertransform.com/pairs/fourier.php
  47. D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
    [CrossRef]
  48. J. W. Goodman, “Introduction to Fourier optics,” in Classic Textbook Reissue Series, W. Stephen, ed. (McGraw-Hill Higher Education, 1988), Chap. 5, pp. 83–90.

2014 (1)

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

2013 (5)

2012 (1)

2011 (2)

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011).
[CrossRef]

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

2010 (3)

2007 (3)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
[CrossRef] [PubMed]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[CrossRef]

2006 (2)

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

2004 (4)

A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004).
[CrossRef]

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).

2003 (2)

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003).
[CrossRef]

2002 (2)

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002).
[CrossRef]

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

2001 (2)

P. Muñoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
[CrossRef] [PubMed]

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightw. Technol. 19(5), 700–707 (2001).
[CrossRef]

1996 (6)

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[CrossRef]

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
[CrossRef]

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

1995 (4)

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
[CrossRef] [PubMed]

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
[CrossRef]

L. B. Soldano and E. C. M Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13(4), 615–627 (1995).
[CrossRef]

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
[CrossRef]

1994 (1)

1991 (2)

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 1041–1135 (1991).
[CrossRef]

C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8(6), 948–964 (1990).
[CrossRef]

Absil, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

Adesida, I.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Amersfoort, M. R.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Artundo, I.

P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.

Asghari, M.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Baba, T.

A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004).
[CrossRef]

Bachmann, M.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[CrossRef]

M. Bachmann, P. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
[CrossRef] [PubMed]

Baets, R.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

Baets, R. G.

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Beckx, S.

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Beelen, G.

G. Beelen and H. F. Bulthuis, “Arrayed waveguide grating with reduced channel passband asymmetry,” Gemfire Corporation, US Patent 7,492,991, (2007).

Bernussi, A. A.

L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

Besse, P.

Besse, P. A.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[CrossRef]

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
[CrossRef] [PubMed]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Bolten, J.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

Bonar, J. R.

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8(6), 948–964 (1990).
[CrossRef]

Brulis, V. J.

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photon. J. 5(2), 2400123 (2013).
[CrossRef]

Buhl, L. L.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Bulthuis, H. F.

G. Beelen and H. F. Bulthuis, “Arrayed waveguide grating with reduced channel passband asymmetry,” Gemfire Corporation, US Patent 7,492,991, (2007).

Caneau, C.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Capmany, J.

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
[CrossRef] [PubMed]

P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.

Cappuzzo, M. A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Cerutti, L.

Chen, E. Y.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

Dai, D.

de Peralta, L. G.

L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

den Besten, J. H.

P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.

Doerr, C. R.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Domenech, J. D.

P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.

Dragone, C.

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 1041–1135 (1991).
[CrossRef]

C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

Dumon, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Edwards, C.A.

C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

Efavi, J.

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

Feng, D.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Fong, J.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Frisbie, S.

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

Fu, X.

Fukazawa, T.

A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004).
[CrossRef]

Gale, R.

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

Gallagher, D. F. G.

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photon. J. 5(2), 2400123 (2013).
[CrossRef]

Gassenq, A.

Georgiev, Y. M.

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003).
[CrossRef]

Gini, E.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[CrossRef]

Gomez, L. T.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Introduction to Fourier optics,” in Classic Textbook Reissue Series, W. Stephen, ed. (McGraw-Hill Higher Education, 1988), Chap. 5, pp. 83–90.

Gorbounov, V.

L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).

Gottlob, H. D. G.

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

Hattasan, N.

He, S.

Henschel, W.

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003).
[CrossRef]

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

Himeno, A.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
[CrossRef]

Hofmann, U.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

Ikuma, Y.

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

Inoue, Y.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
[CrossRef]

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
[CrossRef]

Ishida, K.

Ishii, M.

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

Ito, J.

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

Jaenen, P.

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jeong, S.

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

Jiro, T.

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

Joyner, C. H.

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightw. Technol. 19(5), 700–707 (2001).
[CrossRef]

Kamei, S.

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
[CrossRef]

Khoe, G. D.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
[CrossRef]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[CrossRef]

Kistler, R. C.

C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

Kleijn, E.

Koo, N.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

Kung, C.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Kurz, H.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003).
[CrossRef]

Leaird, D. E.

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

LeBlanc, H. P.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Leijtens, X.

Lemme, M. C.

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

Lepage, G.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

Leuthold, J.

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightw. Technol. 19(5), 700–707 (2001).
[CrossRef]

Liang, H.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Luff, B. J.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Lycett, R. J.

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photon. J. 5(2), 2400123 (2013).
[CrossRef]

Melchior, H.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[CrossRef]

M. Bachmann, P. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
[CrossRef] [PubMed]

Miyamoto, D.

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

Mollenhauer, T.

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

Morito, K.

Moriwaki, K.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
[CrossRef]

Muneeb, M.

Muñoz, P.

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
[CrossRef] [PubMed]

P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

Oda, K.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
[CrossRef]

Okamoto, K.

K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013).
[CrossRef] [PubMed]

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
[CrossRef] [PubMed]

K. Okamoto, “Fundamentals of optical waveguides,” in Optics and Photonics Series, 2nd. ed, (Academic Press, 2005).

Ortega, D.

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

Pastor, D.

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
[CrossRef] [PubMed]

Pathak, S.

Pennings, E.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
[CrossRef]

Pennings, E. C. M

L. B. Soldano and E. C. M Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13(4), 615–627 (1995).
[CrossRef]

Pruessner, M. W.

Pujol, A.

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

Qian, W.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

Rabinovich, W. S.

Rajhel, A.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Rodriguez, J. B.

Roelkens, G.

Ryckeboer, E.

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” in Wiley Series in Pure and Applied Optics, B. E. A. Saleh, ed. 2nd ed, (Wiley Interscience, 2007).

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

Shi, Y.

Smit, M.

Smit, M. K.

E. Kleijn, M. K. Smit, and X. Leijtens, “New analytical arrayed waveguide grating model,” J. Lightw. Technol. 31(20), 3309–3314 (2013).
[CrossRef]

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13(4), 615–627 (1995).
[CrossRef]

Soole, J. B. D.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Stammberger, S.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

Staring, T.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
[CrossRef]

Stievater, T. H.

Sugita, A.

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Takahashi, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
[CrossRef]

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” in Wiley Series in Pure and Applied Optics, B. E. A. Saleh, ed. 2nd ed, (Wiley Interscience, 2007).

Temkin, H.

L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

Toba, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
[CrossRef]

Tournié, E.

Tsuda, H.

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

Ünal, N.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

van Dam, C.

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

Van Thourhout, D.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
[CrossRef] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

Verheyen, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

Wahlbrink, T.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

Wale, M.

Weiner, A. M

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

Welch, C.

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

Whitbread, N.

Wiaux, V.

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Williams, P.

Winzer, P. J.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011).
[CrossRef]

Wong-Foy, A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Yamada, H.

Yasumoto, M.

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

Youtsey, C.

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

Zhang, L.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995).
[CrossRef]

J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8(6), 948–964 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electon. (1)

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (2)

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

IEEE Photon. J. (1)

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photon. J. 5(2), 2400123 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 1041–1135 (1991).
[CrossRef]

C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).

L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[CrossRef]

D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002).
[CrossRef]

J. Lightw. Technol. (9)

A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004).
[CrossRef]

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995).
[CrossRef]

P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004).
[CrossRef]

E. Kleijn, M. K. Smit, and X. Leijtens, “New analytical arrayed waveguide grating model,” J. Lightw. Technol. 31(20), 3309–3314 (2013).
[CrossRef]

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightw. Technol. 19(5), 700–707 (2001).
[CrossRef]

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002).
[CrossRef]

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996).
[CrossRef]

L. B. Soldano and E. C. M Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13(4), 615–627 (1995).
[CrossRef]

J. Lightwave Technol. (2)

S. Jeong and K. Morito, “Novel optical 90° hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI coupler,” J. Lightwave Technol. 28(9), 1323–1331 (2010).
[CrossRef]

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003).
[CrossRef]

Microelec. Eng. (2)

M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004).
[CrossRef]

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010).
[CrossRef]

Nat. Photonics (1)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Other (7)

Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).

P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.

G. Beelen and H. F. Bulthuis, “Arrayed waveguide grating with reduced channel passband asymmetry,” Gemfire Corporation, US Patent 7,492,991, (2007).

B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” in Wiley Series in Pure and Applied Optics, B. E. A. Saleh, ed. 2nd ed, (Wiley Interscience, 2007).

K. Okamoto, “Fundamentals of optical waveguides,” in Optics and Photonics Series, 2nd. ed, (Academic Press, 2005).

“Fourier transform pairs,” available on-line at http://www.thefouriertransform.com/pairs/fourier.php

J. W. Goodman, “Introduction to Fourier optics,” in Classic Textbook Reissue Series, W. Stephen, ed. (McGraw-Hill Higher Education, 1988), Chap. 5, pp. 83–90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

R-AWG schematic view. Abbreviations: PS phase shifter, K coupling constant, xi (i=0,1,2,3) are reference coordinates and il (l=0,1,..N) and on (n=0,1..,M) are input and output waveguides, respectively.

Fig. 2
Fig. 2

Sagnac Loop Reflector diagram (a) and SLR using a MMI with arbitrary coupling constant by a widened/narrowed body layout (b). Abbreviations: i and o stand for input and output waveguides, respectively. K stands for coupling constant, LMMI and W, MMI body length and width respectively, dio distance of input/output waveguides from the edges of the MMI body, lt input/output waveguide taper length and Wt input/output taper narrow and wide side widths.

Fig. 3
Fig. 3

Gaussian R-AWG simulation with 1 input and 6 outputs. (a) Field at the arrayed waveguides. (b) Transfer function from i0 to the output waveguides.

Fig. 4
Fig. 4

Optical microscope image of the fabricated AWGs (a) and spectral traces, (b) regular AWG, (c) R-AWG and (d) comparison.

Fig. 5
Fig. 5

Flat-top R-AWG using a sinc field distribution at the arrayed waveguides. (a) Field at the arrayed waveguides (blue solid), the sinc profile applied (green dashed) and SLR coupling constant Kr in each arm of the array (red crosses). (b) Transfer function from i0 to the output waveguides. (Both for a sinc distribution with parameter a=3.5μm).

Fig. 6
Fig. 6

Field focused at the output plane when using the central wavelength (λ0) for each different profile applied at the AWs.

Fig. 7
Fig. 7

Transfer function (linear) in one output waveguide for each different profile applied: (a) Gaussian, (b) rectangular, (c) triangular, (d) decaying exponential, (e) truncated cosine and (f) Lorentzian functions.

Tables (1)

Tables Icon

Table 1 Mathematical Fourier transform pair expressions.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( o 0 o 1 ) = ( 1 K j K j K 1 K ) ( i 0 i 1 )
o 0 = 2 j ( 1 K ) K e j β L i 0
o 1 = ( 1 2 K ) e j β L i 0
f 2 ( x 2 , ν ) = 2 π w g 2 4 [ Π ( x 2 Nd w ) B i ( x 2 ) ϕ ( x 2 , ν ) r = + δ ( x 2 rd w ) e 2 j ψ PS , r ( ν ) j A r e j β l SLR , r ] b g ( x 2 )
f 3 , p ( x 3 , ν ) = j 2 π w g 2 α 2 4 B g ( x 3 ) e j β l SLR ψ ( ν ) r = + f M ( x 3 + pd i r α d w + ν γ )
θ = arcsin ( β Δ l m 2 π β S d w )
{ Π ( x A ) } | u = y α = A sinc ( A y α )
b i ( x 0 ) = 2 π w i 2 4 e ( x 0 w i ) 2
B i ( x 1 ) = { b i ( x 0 ) } | u = x 1 α = 2 π w i 2 α 2 4 e ( π w i ( x 1 α ) ) 2
f 1 ( x 1 ) = 2 π w g 2 4 [ Π ( x 1 Nd w ) B i ( x 1 ) r = + δ ( x 1 rd w ) ] b g ( x 1 )
f 2 ( x 2 , ν ) = 2 π w g 2 4 [ Π ( x 2 Nd w ) B i ( x 2 ) ϕ ( x 2 , ν ) r = + δ ( x 2 rd w ) e 2 j ψ P S , r ( ν ) j A r e j β l SLR , r ] b g ( x 2 )
ϕ ( x 2 , ν ) = ψ ( ν ) e j 2 π m ν ν 0 x 2 d w
ψ ( ν ) = e j 2 π ν ( n c l 0 c + m N 2 ν 0 )
f 3 ( x 3 , ν ) = { f 2 ( x 2 , ν ) } | u = x 3 α
t q ( ν ) = + f 3 ( x 3 , ν ) b 0 ( x 3 q d o ) x 3

Metrics