Abstract

We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output up to 700 mW of power at 1940 nm. The source is tunable over wavelength intervals comprised between 1850 nm and 2070 nm depending on its configuration. The output can be single or multimode while the optical signal to noise ratio ranges from 25 and 40 dB. The architecture is based on the integrated association of a fiber optical parametric amplifier and a Thulium doped fiber amplifier.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. John O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [CrossRef]
  3. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
    [CrossRef] [PubMed]
  4. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [CrossRef] [PubMed]
  5. B. P.-P. Kuo, M. Hirano, and S. Radic, “Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber,” Opt. Express 20(16), 18422–18431 (2012).
    [CrossRef] [PubMed]
  6. F. Gholami, B. P.-P. Kuo, S. Zlatanovic, N. Alic, and S. Radic, “Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber,” Opt. Express 21(9), 11415–11424 (2013).
    [CrossRef] [PubMed]
  7. J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable Parametric All-Fiber Short-Wavelength IR Transmitter,” J. Lightwave Technol. 28(4), 443–447 (2010).
    [CrossRef]
  8. A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
    [CrossRef]
  9. B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
    [CrossRef]
  10. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
    [CrossRef]
  11. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [CrossRef] [PubMed]
  12. J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).
  13. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [CrossRef] [PubMed]
  14. B. P.-P. Kuo and S. Radic, “Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations,” Opt. Express 20(7), 7716–7725 (2012).
    [CrossRef] [PubMed]
  15. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
    [CrossRef] [PubMed]
  16. A. Willinger, E. Shumakher, and G. Eisenstein, “On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers,” J. Lightwave Technol. 26(14), 2260–2268 (2008).
    [CrossRef]
  17. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. Kuo, C. Brès, A. Widberg, N. Alic, and S. Radic, “10Gbps Parametric Short-Wave Infrared Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
    [CrossRef]

2013 (5)

2012 (3)

2011 (1)

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
[CrossRef]

2010 (1)

2008 (1)

2006 (2)

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[CrossRef] [PubMed]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

2004 (2)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[CrossRef]

M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
[CrossRef] [PubMed]

1999 (1)

J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).

Agger, S. D.

Alam, S. U.

Alic, N.

Auguie, B.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

Baddela, N. K.

Becker, M.

Boucon, A.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

Carter, A.

Chavez Boggio, J. M.

Clarkson, W. A.

Daniel, J. M. O.

de Sterke, M.

Eisenstein, G.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
[CrossRef]

A. Willinger, E. Shumakher, and G. Eisenstein, “On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers,” J. Lightwave Technol. 26(14), 2260–2268 (2008).
[CrossRef]

Ellis, A. D.

Farahmand, M.

Garcia Gunning, F. C.

Gershikov, A.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
[CrossRef]

Gholami, F.

Gray, D. R.

Gruner-Nielsen, L.

Haub, J.

Hayes, J. R.

Heidt, A. M.

Hemming, A.

Hirano, M.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

John O’Carroll, M.

Joon, A. S.

J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).

Jung, Y.

Kazovsky, L. G.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[CrossRef]

Kelly, B.

Kuo, B. P.-P.

Lantz, E.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

Lasri, J.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
[CrossRef]

Lee, J.

J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).

Li, Z.

MacSuibhne, N.

Marhic, M. E.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[CrossRef]

Moro, S.

Mussot, A.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

Numkam, E.

Pálsdóttir, B.

Park, N.

J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).

Parmigiani, F.

Petropoulos, P.

Petrovich, M. N.

Phelan, R.

Poletti, F.

Povlsen, J. H.

Radic, S.

Richardson, D. J.

Ryu, U. C.

J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).

Sacks, Z.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
[CrossRef]

Shumakher, E.

Simakov, N.

Slavík, R.

Stossel, B.

Sylvestre, T.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

Wheeler, N. V.

Willinger, A.

Wong, K. K.-Y.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[CrossRef]

Wooler, J. P.

Zhao, J.

Zlatanovic, S.

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Lee, U. C. Ryu, A. S. Joon, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42–44 (1999).

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photon. Technol. Lett. 18(17), 1825–1827 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

Opt. Commun. (1)

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun. 284(21), 5218–5220 (2011).
[CrossRef]

Opt. Express (8)

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. John O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 μm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21, 28559–28569 (2013).

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[CrossRef] [PubMed]

B. P.-P. Kuo, M. Hirano, and S. Radic, “Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber,” Opt. Express 20(16), 18422–18431 (2012).
[CrossRef] [PubMed]

F. Gholami, B. P.-P. Kuo, S. Zlatanovic, N. Alic, and S. Radic, “Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber,” Opt. Express 21(9), 11415–11424 (2013).
[CrossRef] [PubMed]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[CrossRef] [PubMed]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[CrossRef] [PubMed]

B. P.-P. Kuo and S. Radic, “Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations,” Opt. Express 20(7), 7716–7725 (2012).
[CrossRef] [PubMed]

M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (1)

F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. Kuo, C. Brès, A. Widberg, N. Alic, and S. Radic, “10Gbps Parametric Short-Wave Infrared Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the architecture showing generation, amplification and attenuation undergone by the three waves.

Fig. 2
Fig. 2

Experimental setup for SWIR light generation: PC: Polarization controller, PM: Phase modulator, PRBS: Pseudo-random binary sequence, SOA: Semiconductor optical amplifier, EDFA: Erbium-doped fiber amplifier, TBF: Tunable band pass filter, MUX1: 1310/1550 nm wavelength multiplexer, HNLF: Highly nonlinear fiber.

Fig. 3
Fig. 3

(a) Frequency detuning between the pump and the MI peaks as a function of the pump wavelength. Blue squares: experimental data. Red line: the detuning computed with the parameters sought after. (b) Theoretical CE corresponding to the retrieved parameters and a 34.5 dBm pump at 1565.6 nm.

Fig. 4
Fig. 4

Amplifier configuration with one Thulium fiber piece (a) and two fiber pieces (b). TDF: Thulium doped fiber, MUX2: 1600/1960 nm wavelength multiplexer.

Fig. 5
Fig. 5

(a) Superimposed spectra at the output of the HNLF stage for different O-band signals and a pump at 1565.6 nm (resolution: 1 nm). (b) Experimental (blue squares) and theoretical (red line) CE as a function of the idler wavelength. Random variations of the ZDW were taken into account for the theoretical fit.

Fig. 6
Fig. 6

(a) Superimposed spectra for different O-band signals recorded at the output of 50 cm TDF (resolution: 1 nm) and (b) Calculated gain experienced by the SWIR signal in the TDFA; (c) Optical spectra at the output of the 50 cm TDF when two signals are simultaneously converted (resolution: 1 nm). One signal was maintained at 1311 nm while the second signal was tuned to 1353, 1333, 1315 and 1293 nm (left to right).

Fig. 7
Fig. 7

Superimposed spectra for different O-band signals recorded at the output of 4.5 m TDF. Inset: zoom on the idler generated around 1930 nm with a numerical correction on the power taking the attenuator into account (resolution: 1 nm). (b) Output spectrum for a two-signals input (top) and three-signals input (bottom) (resolution: 0.5 nm).

Fig. 8
Fig. 8

(a) Spectrum at the output of the 4.5 m and 11.5 m TDF assembly for a single input signal: O-band signal and pump are absorbed in the Thulium (resolution: 1 nm). (b) Superimposed spectra at the TDF assembly output for multiple input signals (resolution: 0.5 nm). High power and low ripple is obtained between 1935 nm and 1980 nm.

Metrics