Abstract

We propose two mode optical fibers (TMFs) with minimally low differential modal delay (DMD) slope which are suitable for wavelength division multiplexing and multiple input multiple output (MIMO) combined transmission system. We designed and fabricated three different kinds of TMF, nearly zero-DMD (zTMF), positive-DMD (pTMF) and negative-DMD (nTMF) with a graded index core and a depressed inner cladding. We confirmed that the fabricated zTMF has DMD of below 15 ps/km in the C band and the fabricated pTMF and nTMF have the same degree of effective areas. We also confirmed that a DMD compensation line with a length of 100 km composed of pTMF and nTMF can successfully achieve the best properties of low DMD in the C + L band and low mode conversion.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” Towards 2020 and Beyond,” in Proceedings 14th OptoElectronics and Communications Conference (OECC 2009), paper FT4.
  2. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “32-bit/s/Hz Spectral Efficiency WDM Transmission over 177-km Few-Mode Fiber,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2013), paper PDP5A.1.
    [CrossRef]
  3. S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6x20-GBd QPSK transmission over 1200-km DGD compensated few-mode fiber,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper PDP5C.5.
  4. V. A. J. M. Sleiffer, P. Leoni, Y. Jung, J. Surof, M. Kuschnerov, V. Veljanovski, D. J. Richardson, S. U. Alam, L. Grüner-Nielsen, Y. Sun, B. Corbett, R. Winfield, S. Calabrò, B. Sommerkorn-Krombholz, H. Von Kirchbauer, and H. De Waardt, “20 x 960-Gb/s MDM-DP-32QAM transmission over 60km FMF with inline MM-EDFA,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC2013), paper We.2.D.2.
    [CrossRef]
  5. T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber,” J. Lightwave Technol. 30(17), 2783–2787 (2012).
    [CrossRef]
  6. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Low DMD Four LP Mode Transmission Fiber for Wide-band WDM-MIMO System,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2013), paper OTh3K.1.
    [CrossRef]
  7. R. Ryf, A. H. S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [CrossRef]
  8. L. G. Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling and low loss,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper PDP5A.1.
  9. R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.
  10. M. Li, B. Hoover, S. Li, S. Bickham, S. Ten, E. Ip, Y. Huang, E. Mateo, Y. Shao, and T. Wang, “Low Delay and Large Effective Area Few-Mode Fibers for Mode-Division Multiplexing,” in Proceedings 17th Opto-Electronics and Communications Conference (OECC 2012), paper 5C3–2.
    [CrossRef]
  11. R. Maruyama, T. Shoji, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Design and Fabrication of Long DMD Maximally Flattened Two-Mode Optical Fibers suitable for MIMO Processing,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC2013), paper Mo.4.A.3.
  12. M. Salsi, C. Koebele, G. Charlet, and S. Bigo, “Mode Division Multiplexed Transmission with a weakly coupled Few-Mode Fiber,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper OTu2C.5.
    [CrossRef]
  13. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012),paper OTu1l.4.
    [CrossRef]
  14. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz spectral efficiency, ” in Proc. 38th European Conference and Exhibition on Optical Communication (ECOC2012), paper Th.3.C.1.
    [CrossRef]
  15. H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takeshima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First Demonstration of MC-EDFA-Repeatered SDM Transmission of 40 x 128-Gbit/s PDM-QPSK Signals per Core over 6,160-km 7-core MCF,” in Proc. 38th European Conference and Exhibition on Optical Communication (ECOC2012), paper Th.3.C.1.
    [CrossRef]
  16. R. Georg, W. Stefan, and P. Klaus, “Impact of splices on the nonlinear impairments in mode-division multiplexed few mode fibers,” in Proc. Photonic Networks, 14. 2013 ITG symposium, 1–3 (2013).
  17. S. Warm and K. Petermann, “Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links,” Opt. Express 21(1), 519–532 (2013).
    [CrossRef] [PubMed]
  18. K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  19. http://www.kylia.com/modes.html
  20. K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
    [CrossRef]
  21. N. K. Fontaine, R. Ryf, M. A. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “Characterization of Space-Division Multiplexing Systems using a Swept-Wavelength Interferometer,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2013), paper OW1K.2.
  22. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Experimental Evaluation of Mode Conversion Ratio at Splice Point for Two-Mode Fibers and its Simulated Effect on MIMO Transmission,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2014), paper M3F.6.
    [CrossRef]

2013 (1)

2012 (2)

2002 (1)

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

1981 (1)

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
[CrossRef]

Bolle, C.

Burrows, E. C.

Esmaeelpour, M.

Essiambre, R.

Gnauck, A. H.

Kato, Y.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
[CrossRef]

Kitayama, K.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Kuwaki, N.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

Lingle, R.

Maruyama, R.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

Matsuo, S.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

McCurdy, A. H.

Mori, T.

Mumtaz, S.

Ohashi, M.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

Peckham, D. W.

Petermann, K.

Randel, A. H. S.

Ryf, R.

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Sakamoto, T.

Sato, K.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

Seikai, S.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
[CrossRef]

Sierra, A.

Tomita, S.

Uchida, N.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
[CrossRef]

Warm, S.

Winzer, P. J.

Yamamoto, T.

IEEE J. Quantum Electron. (2)

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17(6), 1057–1063 (1981).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (17)

N. K. Fontaine, R. Ryf, M. A. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “Characterization of Space-Division Multiplexing Systems using a Swept-Wavelength Interferometer,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2013), paper OW1K.2.

R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Experimental Evaluation of Mode Conversion Ratio at Splice Point for Two-Mode Fibers and its Simulated Effect on MIMO Transmission,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2014), paper M3F.6.
[CrossRef]

L. G. Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling and low loss,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper PDP5A.1.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proc. of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

M. Li, B. Hoover, S. Li, S. Bickham, S. Ten, E. Ip, Y. Huang, E. Mateo, Y. Shao, and T. Wang, “Low Delay and Large Effective Area Few-Mode Fibers for Mode-Division Multiplexing,” in Proceedings 17th Opto-Electronics and Communications Conference (OECC 2012), paper 5C3–2.
[CrossRef]

R. Maruyama, T. Shoji, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Design and Fabrication of Long DMD Maximally Flattened Two-Mode Optical Fibers suitable for MIMO Processing,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC2013), paper Mo.4.A.3.

M. Salsi, C. Koebele, G. Charlet, and S. Bigo, “Mode Division Multiplexed Transmission with a weakly coupled Few-Mode Fiber,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper OTu2C.5.
[CrossRef]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012),paper OTu1l.4.
[CrossRef]

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz spectral efficiency, ” in Proc. 38th European Conference and Exhibition on Optical Communication (ECOC2012), paper Th.3.C.1.
[CrossRef]

H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takeshima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First Demonstration of MC-EDFA-Repeatered SDM Transmission of 40 x 128-Gbit/s PDM-QPSK Signals per Core over 6,160-km 7-core MCF,” in Proc. 38th European Conference and Exhibition on Optical Communication (ECOC2012), paper Th.3.C.1.
[CrossRef]

R. Georg, W. Stefan, and P. Klaus, “Impact of splices on the nonlinear impairments in mode-division multiplexed few mode fibers,” in Proc. Photonic Networks, 14. 2013 ITG symposium, 1–3 (2013).

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Low DMD Four LP Mode Transmission Fiber for Wide-band WDM-MIMO System,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2013), paper OTh3K.1.
[CrossRef]

http://www.kylia.com/modes.html

T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” Towards 2020 and Beyond,” in Proceedings 14th OptoElectronics and Communications Conference (OECC 2009), paper FT4.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “32-bit/s/Hz Spectral Efficiency WDM Transmission over 177-km Few-Mode Fiber,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2013), paper PDP5A.1.
[CrossRef]

S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6x20-GBd QPSK transmission over 1200-km DGD compensated few-mode fiber,” in Proc. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper PDP5C.5.

V. A. J. M. Sleiffer, P. Leoni, Y. Jung, J. Surof, M. Kuschnerov, V. Veljanovski, D. J. Richardson, S. U. Alam, L. Grüner-Nielsen, Y. Sun, B. Corbett, R. Winfield, S. Calabrò, B. Sommerkorn-Krombholz, H. Von Kirchbauer, and H. De Waardt, “20 x 960-Gb/s MDM-DP-32QAM transmission over 60km FMF with inline MM-EDFA,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC2013), paper We.2.D.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Concept of DMD compensation line.

Fig. 2
Fig. 2

Conditions for DMD compensation in wide wavelength range. (a) DMD has wavelength dependency (Eq. (4)), (b) DMD has no wavelength dependency (Eq. (5)).

Fig. 3
Fig. 3

Proposed refractive index profile of the TMF.

Fig. 4
Fig. 4

Calculated DMD on the effect of Ra.

Fig. 5
Fig. 5

Calculated SDMD_λ on the effect of Rd and α.

Fig. 6
Fig. 6

(a) Relationship between SDMD_λ and effective area and (b) relationship between SDMD_λ and calculated DMD as a function of various α.

Fig. 7
Fig. 7

OTDR traces of LP01 and LP11 modes for zTMF.

Fig. 8
Fig. 8

Experimental setup for DMD measurement.

Fig. 9
Fig. 9

Measured DMD of zTMF as a function of wavelength.

Fig. 10
Fig. 10

OTDR traces of LP01 and LP11 modes for pTMF1, pTMF2 and nTMF3.

Fig. 11
Fig. 11

Measured DMD for pTMF1, pTMF2 and nTMF3 as a function of wavelength.

Fig. 12
Fig. 12

Measured and calculated DMDs for the compensation line in the C + L band.

Fig. 13
Fig. 13

Impulse response signals when the fabricated TMFs were connected. (a) between nTMF3 (36.0 km) and pTMF2 (17.2 km) and (b)among pTMF1 (38.7 km), nTMF3 (36.0 km) and pTMF2 (17.2 km)

Tables (2)

Tables Icon

Table 1 Optical Properties for zTMF

Tables Icon

Table 2 Optical properties of pTMF and nTMF

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δτ=1/ v g 11 1/ v g 01 ,
Δ τ total =(Δ τ p L p )+(Δ τ n L n ),
Δ τ p :| Δ τ n |= L p : L n .
Δ τ p :| Δ τ n |= S p :| S n | ( S p 0, S n 0),
S p = S n =0,
T=ka n 1 2Δ /A,

Metrics