Abstract

A procedure of bonding III-V material to SOI at low temperature using conductive and transparent adhesive ZnO as intermediate layer is demonstrated. Bonding layer thickness of less than 100 nm was achieved in our experiment that guaranteed good light coupling efficiency between III-V and silicon. This bonding method showed good bonding strength with shear stress of 80 N/cm2. The lowest resistance of the bonded samples was 48.9 Ω and the transmittance of the spin-coated ZnO layer was above 99%. This procedure is applicable for fabricating hybrid III-V/Si lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens
Opt. Mater. Express 3(1) 35-46 (2013)

Low-index nanopatterned barrier for hybrid oxide-free III-V silicon conductive bonding

Kristelle Bougot-Robin, Anne Talneau, and Henri Benisty
Opt. Express 22(19) 23333-23338 (2014)

Heterogeneous Si/III-V integration and the optical vertical interconnect access

Qian Wang, Doris Keh Ting Ng, Yadong Wang, Yongqiang Wei, Jing Pu, Payam Rabiei, and Seng Tiong Ho
Opt. Express 20(15) 16745-16756 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, “Fiber-optic communication systems,” NASA. STI/Recon Technical Report A. 93, 17972 (1992).
  2. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  4. H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
    [Crossref]
  5. D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
    [Crossref]
  6. S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  7. D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
    [Crossref]
  8. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
    [Crossref]
  9. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
    [Crossref]
  10. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [Crossref] [PubMed]
  11. T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
    [Crossref]
  12. M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films 306(1), 78–85 (1997).
    [Crossref]
  13. S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
    [Crossref]
  14. T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
    [Crossref]
  15. C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
    [Crossref]
  16. S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
    [Crossref]
  17. W. Tang and D. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films 238(1), 83–87 (1994).
    [Crossref]
  18. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. Van Stryland, “Design, fabrication and testing, sources and detectors, radiometry and photometry,” in Handbook of Optics, Volume II (McGraw-Hill, Inc., 2009).
  19. C. D. M. Bass, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, “Optical properties of materials, nonlinear optics, quatum optics,” in Handbook of Optics, Third ed. (McGraw-Hill Professional, 2009).
  20. H. Dejun, “Refractive index of AlInGaAs layers in the transparent wavelength region,” Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting2, 349–350 (1994).
  21. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  22. H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
    [Crossref]

2013 (1)

2012 (1)

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

2011 (4)

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

2010 (4)

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

2009 (1)

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

2008 (1)

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

2007 (2)

2006 (1)

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

1997 (1)

M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films 306(1), 78–85 (1997).
[Crossref]

1994 (1)

W. Tang and D. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films 238(1), 83–87 (1994).
[Crossref]

1992 (1)

G. P. Agrawal, “Fiber-optic communication systems,” NASA. STI/Recon Technical Report A. 93, 17972 (1992).

Agrawal, G. P.

G. P. Agrawal, “Fiber-optic communication systems,” NASA. STI/Recon Technical Report A. 93, 17972 (1992).

Baets, R.

Beausoleil, R. G.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

Bovington, J.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Bowers, J. E.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Cameron, D.

W. Tang and D. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films 238(1), 83–87 (1994).
[Crossref]

Chang, H. H.

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Chen, H. W.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Chen, T.

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Chen, W. X.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Cheng, Y. B.

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Choi, Y.-K.

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

Cohen, O.

Di Cioccio, L.

Fang, A. W.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Fedeli, J. M.

Fiorentino, M.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

Grenouillet, L.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Gupta, D.

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

Heck, J.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Heck, J. M.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

Hong, T.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Huang, C. H.

C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
[Crossref]

Jacob-Mitos, M.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Jones, R.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Keyvaninia, S.

Kim, S.

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

Koch, B. R.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Kopp, C.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Kouzuka, H.

M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films 306(1), 78–85 (1997).
[Crossref]

Kumar, R.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Kuo, Y. H.

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Lagahe, C.

Li, Y. P.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

Liang, D.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Liang, S.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Liao, L.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Lin, C. C.

C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
[Crossref]

Lin, C. H.

C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
[Crossref]

Lin, C. Y.

C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
[Crossref]

Liu, L.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Mandorlo, F.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Moon, H.

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

Morthier, G.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Muneeb, M.

Ohyama, M.

M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films 306(1), 78–85 (1997).
[Crossref]

Pan, J. Q.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Paniccia, M. J.

Park, H.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

Qin, G. G.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

Qin, G.-G.

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Ran, G. Z.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Raz, O.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Regreny, P.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[Crossref] [PubMed]

Roelkens, G.

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

Rojo Romeo, P.

Rojo-Romeo, P.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Seassal, C.

Selvaraja, S. K.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Spuesens, T.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Srinivasan, S.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

Stankovic, S.

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Sysak, M.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Sysak, M. N.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Tang, W.

W. Tang and D. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films 238(1), 83–87 (1994).
[Crossref]

Tang, Y. B.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Tseng, T. Y.

C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[Crossref] [PubMed]

Van Veldhoven, P.

Verstuyft, S.

Wang, W.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Wang, Y.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Wong, K.

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Yin, L. Q.

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Yoko, T.

M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films 306(1), 78–85 (1997).
[Crossref]

Yoo, S.

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

Zhang, J.-H.

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Zhao, L. J.

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Zhu, H. L.

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

Adv. Opt. Technol. (1)

H. Park, A. W. Fang, D. Liang, Y. H. Kuo, H. H. Chang, B. R. Koch, H. W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Technol. 2008, 1–17 (2008).
[Crossref]

Electrochem. Solid-State Lett. (1)

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Electron Devices, IEEE Transactions on (1)

S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” Electron Devices, IEEE Transactions on 56(4), 696–699 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

H. Park, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011).
[Crossref]

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. Q. Pan, and W. Wang, “Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012).
[Crossref]

IEEE Photonic Tech L (1)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photonic Tech L 23(23), 1781–1783 (2011).
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

NASA. STI/Recon Technical Report A. (1)

G. P. Agrawal, “Fiber-optic communication systems,” NASA. STI/Recon Technical Report A. 93, 17972 (1992).

Nat. Photonics (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Photonics Technology Letters, IEEE (1)

T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J.-H. Zhang, W. Wang, and G.-G. Qin, “A selective-area metal bonding InGaAsP–Si laser,” Photonics Technology Letters, IEEE 22(15), 1141–1143 (2010).
[Crossref]

Surf. Coat. Tech. (1)

C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surf. Coat. Tech. 202(4-7), 1319–1322 (2007).
[Crossref]

Thin Solid Films (2)

W. Tang and D. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films 238(1), 83–87 (1994).
[Crossref]

M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films 306(1), 78–85 (1997).
[Crossref]

Other (3)

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. Van Stryland, “Design, fabrication and testing, sources and detectors, radiometry and photometry,” in Handbook of Optics, Volume II (McGraw-Hill, Inc., 2009).

C. D. M. Bass, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, “Optical properties of materials, nonlinear optics, quatum optics,” in Handbook of Optics, Third ed. (McGraw-Hill Professional, 2009).

H. Dejun, “Refractive index of AlInGaAs layers in the transparent wavelength region,” Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting2, 349–350 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) 200 times magnification of microphotograph of ZnO layer heated at 150°C for 2 hours, the ZnO solution was spin-coated on SOI die with a spin-coating speed of 3000 rpm. (b) Transmission spectrum of the 0.5 mol/L ZnO solution spin coated on glass and heated at 150°C for 2 hours.
Fig. 2
Fig. 2 (a) Photoresist assisted ZnO bonding structure (b) SEM of InP die bonded on Si using 0.5 mol/L ZnO solution. The InP die was tightly attached to the SOI die and there was no visible air gap between InP and SOI.
Fig. 3
Fig. 3 (a) The InP side was connected to the anode and the SOI side was connected to the cathode. In the first test the IV curve jittered a lot (dashed line) and in the second test some perturbation randomly occurred (dotted line) and in the third test the IV curve became smooth (solid line). The differential resistance was 94 Ω. (b) The InP side was connected to the cathode and the SOI side was connected to the anode. The IV curve jittered more rigorously (dashed line) and after several tests, perturbation still randomly occurred (dotted line) and after a few more tests the differential resistance decreased and stabilized at 131 Ω (solid line).
Fig. 4
Fig. 4 (a) Confinement factor in Si as a function of ZnO layer thickness which ranges from 0 to 400 nm. The height and width of the Si waveguide are fixed at 0.76 and 1.8 microns respectively. Coupling efficiency decreases when the ZnO layer thickness is larger and almost no light is coupled when the ZnO layer is thicker than 200 nm. (b) Si confinement factor with waveguide height varying from 0.4 μm to 0.94 μm and width varying from 0.6 μm to 3 μm.

Tables (1)

Tables Icon

Table 1 Resistance of the Two Samples Before and After a 10V Voltage Was Applied on Them for 1 Minute

Metrics