Abstract

The ability to characterize fibers with near-zero dispersion-length products is of considerable practical interest. We introduce dispersive virtual reference interferometry (DVRI) as a technique for the characterization of short length (<1m) fibers with near-zero disperison-length. DVRI has an accuracy equivalent to standard balanced spectral interferometry (on the order of 10−3 ps and 10−5 ps/nm for the group delay and dispersion-length measurements respectively) but does not require wide spectral bandwidths or multiple spectral scans. Following experimental validation, the DVRI technique is used to characterize a 23.3-cm erbium-doped gain fiber (dispersion-length product <0.002 ps/nm), using a tunable laser with a bandwidth of 145nm. Furthermore, the dispersion in a 28.6-cm commercial dispersion shifted fiber is characterized across the zero-dispersion wavelength and the zero-disperison-wavelength and slope were determined to be 1566.7 nm and 8.57 × 10−5 ps/(nm2∙m) with a precision of ± 0.2 nm and ± 0.06 × 10−5 ps/(nm2∙m), respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
    [CrossRef]
  2. C. Palavicini, Y. Jaouën, G. Debarge, E. Kerrinckx, Y. Quiquempois, M. Douay, C. Lepers, A. F. Obaton, and G. Melin, “Phase-sensitive optical low-coherence reflectometry technique applied to the characterization of photonic crystal fiber properties,” Opt. Lett. 30(4), 361–363 (2005).
    [CrossRef] [PubMed]
  3. F. Sears, L. Cohen, and J. Stone, “Interferometric measurements of dispersion-spectra variations in a single-mode fiber,” J. Lightwave Technol. 2(2), 181–184 (1984).
    [CrossRef]
  4. P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
    [CrossRef]
  5. R. Cella and W. Wood, “Measurement of Chromatic Dispersion in Erbium-Doped Fiber using Low Coherence Interferometry,” in Proceedings of the Sixth Optical Fibre Measurement Conference (2001), pp. 207–210.
  6. P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
    [CrossRef]
  7. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006).
    [CrossRef] [PubMed]
  8. W. Mohammed, J. Meier, M. A. Galle, L. Qian, J. S. Aitchison, and P. W. E. Smith, “Linear and quadratic dispersion characterization of millimeter-length fibers and waveguides using common-path interferometry,” Opt. Lett. 32(22), 3312–3314 (2007).
    [CrossRef] [PubMed]
  9. M. A. Galle, S. S. Saini, W. S. Mohammed, and L. Qian, “Virtual reference interferometry: theory and experiment,” J. Opt. Soc. Am. B 29(11), 3201–3210 (2012).
    [CrossRef]
  10. Corning® Inc., “Corning® SMF-28™ Product Information,” http://ece466.groups.et.byu.net/notes/smf28.pdf .

2012 (1)

2007 (1)

2006 (1)

2005 (2)

1989 (1)

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

1985 (1)

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[CrossRef]

1984 (1)

F. Sears, L. Cohen, and J. Stone, “Interferometric measurements of dispersion-spectra variations in a single-mode fiber,” J. Lightwave Technol. 2(2), 181–184 (1984).
[CrossRef]

Aitchison, J. S.

Cella, R.

R. Cella and W. Wood, “Measurement of Chromatic Dispersion in Erbium-Doped Fiber using Low Coherence Interferometry,” in Proceedings of the Sixth Optical Fibre Measurement Conference (2001), pp. 207–210.

Cohen, L.

F. Sears, L. Cohen, and J. Stone, “Interferometric measurements of dispersion-spectra variations in a single-mode fiber,” J. Lightwave Technol. 2(2), 181–184 (1984).
[CrossRef]

Cohen, L. G.

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[CrossRef]

Debarge, G.

Ding, H.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Douay, M.

Galle, M. A.

Jackson, D. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Jaouën, Y.

Kerrinckx, E.

Kim, D. Y.

Lee, J. Y.

Lepers, C.

Lu, P.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Meier, J.

Melin, G.

Merritt, P. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Mihailov, S. J.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Mohammed, W.

Mohammed, W. S.

Obaton, A. F.

Palavicini, C.

Qian, L.

Quiquempois, Y.

Saini, S. S.

Sears, F.

F. Sears, L. Cohen, and J. Stone, “Interferometric measurements of dispersion-spectra variations in a single-mode fiber,” J. Lightwave Technol. 2(2), 181–184 (1984).
[CrossRef]

Smith, P. W. E.

Stone, J.

F. Sears, L. Cohen, and J. Stone, “Interferometric measurements of dispersion-spectra variations in a single-mode fiber,” J. Lightwave Technol. 2(2), 181–184 (1984).
[CrossRef]

Tatam, R. P.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Wood, W.

R. Cella and W. Wood, “Measurement of Chromatic Dispersion in Erbium-Doped Fiber using Low Coherence Interferometry,” in Proceedings of the Sixth Optical Fibre Measurement Conference (2001), pp. 207–210.

J. Lightwave Technol. (3)

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[CrossRef]

F. Sears, L. Cohen, and J. Stone, “Interferometric measurements of dispersion-spectra variations in a single-mode fiber,” J. Lightwave Technol. 2(2), 181–184 (1984).
[CrossRef]

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

R. Cella and W. Wood, “Measurement of Chromatic Dispersion in Erbium-Doped Fiber using Low Coherence Interferometry,” in Proceedings of the Sixth Optical Fibre Measurement Conference (2001), pp. 207–210.

Corning® Inc., “Corning® SMF-28™ Product Information,” http://ece466.groups.et.byu.net/notes/smf28.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Amplitude modulated interference pattern described by Eq. (3). The fast varying interference is shown in grey and is not resolved in the figure. The slow varying amplitude modulation with phase described by Eq. (4) is shown.

Fig. 2
Fig. 2

Plot of the dispersive virtual reference interferograms and group index × length curves for (a) K = 0 (VRI with a non-dispersive reference) and (b) DVRI using K = −8.68e + 3. Two N g v ( λ ) L v curves are superimposed to show the curves that generate intersections at λ 0 = a and λ 0 = λ 0 new .

Fig. 3
Fig. 3

Setup for dispersion measurement of (a) standard fibers (b) polarization maintaining gain fiber.

Fig. 4
Fig. 4

Measurements of (a) group delay and (b) dispersion parameter on a 20cm length of SMF28 using VRI and DVRI (K = −2e + 3).

Fig. 5
Fig. 5

(a) Gain and (b) group delay curves for a 23.3 cm Erbium doped PM Gain fiber pumped at 980 nm at various pump powers for both fast axis and slow axis measured using DVRI (K = −7.75e + 3).

Fig. 6
Fig. 6

Dispersion parameter curves for a 23.3 cm length of Erbium doped PM Gain fiber pumped at 980 nm for both (a) fast and (b) slow axes at various pump powers via DVRI (K = −7.75e + 3).

Fig. 7
Fig. 7

Measurements of (a) group delay (b) dispersion parameter via direct measurement on dispersion shifted fiber using DVRI (K = −8e + 3).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I Re a l ( λ ) cos ( 2 β f ( λ ) L f )
I v i r t u a l ( λ , λ 0 ) = cos ( 2 β ν ( λ ) L ν )
I SO ( λ,  λ 0 ) cos( 2( β f ( λ ) L f β v ( λ ) L v ) ) slow varying term + cos( 2( β f ( λ ) L f + β v ( λ ) L v ) ) fast varying term
  φ A m p . mod . ( λ ) =   2 | β f ( λ ) L f β v ( λ ) L v | = 2 k 0 | n e f f f ( λ ) L f n e f f v ( λ ) L v |
N g v ( λ 0 ) L v = N g f ( λ 0 ) L f
B min ( λ 0 ) ( 6 λ 0 Δ ( λ 0 ) ) 1 2
| φ A m p . mod . ( λ m ) φ A m p . mod . ( λ n ) | 2 π | [ ( λ m λ 0 ) 2 λ m ( λ n λ 0 ) 2 λ n ] Δ ( λ 0 ) + [ ( λ m λ 0 ) 3 3 λ m ( λ n λ 0 ) 3 3 λ n ] d Δ d λ | λ 0 | π ( m n )  
| Δ ( λ 0 ) | c λ 0 | D v ( λ 0 ) L v D f ( λ 0 ) L f |
N g v ( λ ) L v = K ( λ a ) +   b
D v ( λ ) L v = 1 c d N g v ( λ ) L v d λ = K c
D f ( λ 0 ) L f = 1 c ( K sgn ( K ) | Δ ( λ 0 ) | λ 0 )

Metrics