Abstract

Fabry-Perot resonators or interferometers (FPI) have existed for a long time and act as light accumulators. However, their applications have been limited to the allowed resonance modes in the cavity, which are defined by the specific free-spectral range of the FPI. We show here a novel concept involving a light “capacitor” capable of accumulating light over a wide spectral range, at any given repetition frequency. This device is actually an FPI in which a high chirped mirror (chirped fiber Bragg grating or chirp multi-layer coated mirror) is added to remove the wavelength dependence of the mode resonances, enabling a single very large broad-band mode. This “modification” does not affect the amount of light which can be accumulated, i.e. it does not reduce the Q-factor of the cavity. We show here the theoretical concept of such a device and experimental results demonstrating this principle.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Sébastien Loranger, Mathieu Gagné, and Raman Kashyap, "Capacitors go optical: wavelength independent broadband mode cavity: erratum," Opt. Express 22, 30127-30127 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-24-30127

References

  • View by:
  • |
  • |
  • |

  1. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
    [CrossRef]
  2. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
    [CrossRef] [PubMed]
  3. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
    [CrossRef] [PubMed]
  4. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
    [CrossRef] [PubMed]
  5. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
    [CrossRef]
  6. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85(7), 1101–1103 (2004).
    [CrossRef]
  7. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
    [CrossRef]
  8. R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
    [CrossRef]
  9. Y.-G. Han, X. Dong, C.-S. Kim, M. Y. Jeong, and J. H. Lee, “Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser,” Opt. Express 15(6), 2921–2926 (2007).
    [CrossRef] [PubMed]
  10. X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
    [CrossRef]
  11. J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).
  12. X. Shu, K. Sugden, and K. Byron, “Bragg-grating-based all-fiber distributed Gires-Tournois etalons,” Opt. Lett. 28(11), 881–883 (2003).
    [CrossRef] [PubMed]
  13. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
    [CrossRef]
  14. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [CrossRef] [PubMed]
  15. K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
    [CrossRef]
  16. R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
    [CrossRef]
  17. A. Wada, K. Ikuma, M. Syoji, S. Tanaka, and N. Takahashi, “Wide-Dynamic-Range High-Resolution Fiber Fabry?Perot Interferometric Sensor With Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 31(19), 3176–3180 (2013).
    [CrossRef]
  18. S. Pereira and S. Larochelle, “Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers,” Opt. Express 13(6), 1906–1915 (2005).
    [CrossRef] [PubMed]
  19. X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
    [CrossRef]
  20. M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
    [CrossRef] [PubMed]
  21. S. Duval, M. Olivier, M. Bernier, R. Vallée, and M. Piché, “Ultrashort pulses from an all-fiber ring laser incorporating a pair of chirped fiber Bragg gratings,” Opt. Lett. 39(4), 989–992 (2014).
    [CrossRef] [PubMed]

2014 (2)

2013 (1)

2012 (2)

R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
[CrossRef]

X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

2010 (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

2008 (1)

2007 (3)

2006 (1)

X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
[CrossRef]

2005 (1)

2004 (2)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
[CrossRef]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85(7), 1101–1103 (2004).
[CrossRef]

2003 (2)

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

X. Shu, K. Sugden, and K. Byron, “Bragg-grating-based all-fiber distributed Gires-Tournois etalons,” Opt. Lett. 28(11), 881–883 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

2000 (1)

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

1998 (1)

K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
[CrossRef]

1995 (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

1994 (1)

Ahn, T.-J.

Apai, P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Ayotte, N.

Azana, J.

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

Azaña, J.

Baba, T.

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85(7), 1101–1103 (2004).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
[CrossRef]

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Berger, N. K.

Bernier, M.

Byron, K.

Chan, C. C.

X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
[CrossRef]

Chen, L. R.

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

DeBell, G.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Dong, X.

X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Y.-G. Han, X. Dong, C.-S. Kim, M. Y. Jeong, and J. H. Lee, “Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser,” Opt. Express 15(6), 2921–2926 (2007).
[CrossRef] [PubMed]

X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
[CrossRef]

Doucet, S.

Duval, S.

Ferencz, K.

Ferreira, M.

R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
[CrossRef]

Fischer, B.

Frazão, O.

R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
[CrossRef]

Gagné, M.

Han, Y.-G.

Ikuma, K.

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
[CrossRef]

Jeong, M. Y.

Kashyap, R.

Kim, C.-S.

Kockaert, P.

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Koo, K. P.

K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
[CrossRef]

Kovács, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Krausz, F.

Kulishov, M.

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
[CrossRef]

Lakó, S.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Lapointe, J.

LaRochelle, S.

R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
[CrossRef] [PubMed]

S. Pereira and S. Larochelle, “Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers,” Opt. Express 13(6), 1906–1915 (2005).
[CrossRef] [PubMed]

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

Leblanc, M.

K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
[CrossRef]

Lee, J. H.

Levit, B.

Liu, W.

X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Loranger, S.

Louderback, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Mori, D.

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85(7), 1101–1103 (2004).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
[CrossRef]

Mott, L.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Nemova, G.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Olivier, M.

Park, Y.

Pereira, S.

Piché, M.

Plant, D. V.

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Quoc Ngo, N.

Santos, J.

R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
[CrossRef]

Shu, X.

Shum, P.

X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
[CrossRef]

Silva, R.

R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
[CrossRef]

Slavik, R.

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

Slavík, R.

Spielmann, C.

Sugden, K.

X. Shu, K. Sugden, and K. Byron, “Bragg-grating-based all-fiber distributed Gires-Tournois etalons,” Opt. Lett. 28(11), 881–883 (2003).
[CrossRef] [PubMed]

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Syoji, M.

Szipöcs, R.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

Takahashi, N.

Tanaka, S.

Tikhonravov, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Trubetskov, M.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Tsai, T. E.

K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
[CrossRef]

Vallée, R.

Vohra, S. T.

K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
[CrossRef]

Wada, A.

Wang, D.

X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Wu, M.

X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Yang, X.

X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
[CrossRef]

Appl. Phys. B (1)

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B 70(S1), S51–S57 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85(7), 1101–1103 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(3), 484–491 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

K. P. Koo, M. Leblanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges,” IEEE Photon. Technol. Lett. 10(7), 1006–1008 (1998).
[CrossRef]

X. Dong, P. Shum, C. C. Chan, and X. Yang, “FSR-tunable fabry-Peárot filter with superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(1), 184–186 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Lightwave Technology, Journalism (1)

J. Azana, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” Lightwave Technology, Journalism 21, 1490–1498 (2003).

Opt. Express (5)

Opt. Fiber Technol. (1)

X. Dong, W. Liu, D. Wang, and M. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Opt. Lett. (4)

Photonic Sens. (1)

R. Silva, M. Ferreira, J. Santos, and O. Frazão, “Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer,” Photonic Sens. 2(1), 77–80 (2012).
[CrossRef]

Rep. Prog. Phys. (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Supplementary Material (2)

» Media 1: MP4 (3901 KB)     
» Media 2: MP4 (3799 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of concept of broad-band mode cavity (BBMC). In (a) a standard Fabry-Perot cavity is shown, in which the mirror spacing is fixed and different wavelengths oscillate in different modes. In (b), a BBMC is shown, in which different wavelengths oscillate in a same mode, generating a broad-band response.

Fig. 2
Fig. 2

Different configurations of a BBMC and experimental characterization system. The different configurations proposed are: (a) two CFBG, thus allowing a guided transmitted output, or (b) a single CFBG used to cancel out the wavelength dependence of the FPI and a fixed reflector (silver-tip mirror). Both configurations have been tested with the experimental setup shown in (c), using a JDSU-OMNI wavelength sweeping laser where the fibered BBMC is spliced to standard SMF-28 fiber.

Fig. 3
Fig. 3

Theoretical calculation of transmission (in dB) of different types of cavities of 50 cm of length in function of wavelength (Δλ) AND cavity stretching (ΔL): (a) standard Fabry-perot resonator, (b) broad-band cavity with linearly chired gratings (2 gratings at 6.10 nm/mm) and (c) Super-broad-band cavity with a quadratic chirp correction to compensate for group delay (δ2 = 0.22 µm/nm2). Note the difference in the wavelength scale.

Fig. 4
Fig. 4

(a) Reflection spectrum of each 2.5 mm long individual grating with a chirp of 3.77 nm/mm. (b) Total transmission of both CFBGs in the experimental BBMC where the resonant and non-resonant cases are compared, thus showing the potential contrast of the modes. This is done by performing a scan at different temperatures (which varies slowly) to observe all the possible mode positions and find the maxima and minima at each wavelength. The resonant case is taken as the maximum while the non-resonant case is taken as the minimum. Ideally a 100% transmission over the whole grating is expected at resonance, which is not the case here because of dissimilarities in grating transmission.

Fig. 5
Fig. 5

Simulation and measurements of a broad-band cavity of 80 cm in length with two ~10 dB CFBG (~90% reflectivity). The theoretical (a)Reflection and (b)Transmission spectrum is compared with measured (c)Reflection and (d)Transmission spectrum. To simulate cavity stretching, the experimental BBMC is heated in a thermally isolated container. The broadband mode of interest is not perfectly centered on the grating, hence the de-centering in the experimental data. Some regions show lower contrast due to variation in transmission from one grating to another, but the concept of BBMC is still well demonstrated here in the experimental device.

Fig. 6
Fig. 6

Theoritical calculation (a) and measurements (b) of a broad-band cavity of 80 cm in length with one CFBG of ~1 dB in strength (~10% reflectivity) and a silver-tipped fiber end (fixed mirror) at 90-95% reflectivity. To simulate cavity stretching, the experimental BBMC is heated in a thermally isolated container. The larger bandwidth of the experimental BBMC is probably due to a non-linear chirp which was added by mistake to the grating and which favorably broadens the mode.

Fig. 7
Fig. 7

Capacitive application of the BBMC. A scheme for local amplification of power of a pump beam in an active material is shown in (a). The total calculated absorption of a BBMC with low single-pass intra-cavity absorption is plotted in (b), showing a considerable improvement in absorption, for any pump laser (no need to match modes). Here, the input reflector is adjusted to cancel out reflection and gain 100% injection. As a different example (without intra-cavity loss), the capacitive nature of the BBMC can be shown in (d), where we see the simulated temporal transient function of the transmission in this optical capacitor for an arbitrarily chosen train of pulse of 750 MHz starting at t = 0, as shown schematically in (c). Sending the same pulse train in such a FPI cavity (no chirped gratings) would result in only 0.25% transmission in the steady state.

Fig. 8
Fig. 8

Frames of simulation video comparing the growth of a pulsed signal in a BBMC (a) (see Media 1) versus a standard FPI with fixed mirrors (b) (see Media 2). In the last case, the pulse train frequency does not match the FSR of the FPI, therefore there is no transmission after any long period. However, in a BBMC, the pulse train repetition frequency does not have any frequency restrictions, therefore it is transmitted after the build-up time.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ=β2 L 0 +β2 δ CFBG1 (Δλ)+β2 δ CFBG2 (Δλ)
δ(Δλ)= δ 1 Δλ+ δ 2 Δ λ 2
φ= 2π n eff L 0 λ 0 +( 2π n g L 0 λ 0 2 + 4π n eff λ 0 δ 1 )Δλ+( 4π n g λ 0 2 δ 1 + 4π n eff λ 0 δ 2 D πc L 0 λ 0 )Δ λ 2 =mπ
δ 1 = n g L 0 2 n eff λ 0 δ 2 =( n g 2 n eff λ 0 2 +D c 2 ) L 0 2 n eff
E= (1 r 1 )(1 r 2 ) e iφ 1 r 1 r 2 e iφ
τ N = [ v g ( α 1 2L ln( R 1 R 2 ) ) ] 1
R 1 = R 2 (1A) 2

Metrics