Abstract

We report the observation of propagating modes of visible and near infrared light in nanoscale coaxial (metal-dielectric-metal) structures, using near-field scanning optical microscopy. Together with numerical calculations, we show that the propagated modes have different nature depending on the excitation wavelength, i.e., plasmonic TE11 and TE21 modes in the near infrared and photonic TE31, TE41 and TM11 modes in the visible. Far field transmission out of the nanocoaxes is dominated by the superposition of Fabry-Perot cavity modes resonating in the structures, consistent with theory. Such coaxial optical waveguides may be useful for future nanoscale photonic systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [CrossRef]
  2. J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
    [CrossRef]
  3. D. Pozar, Microwave Engineering (John Wiley and Sons, 2005).
  4. W. Thomson, “On the theory of the electric telegraph,” Proc. R. Soc. Lond. 7(0), 382–399 (1854).
    [CrossRef]
  5. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
    [CrossRef]
  6. F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
    [CrossRef]
  7. R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
    [CrossRef] [PubMed]
  8. A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85(4), 045407 (2012).
    [CrossRef]
  9. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
    [CrossRef]
  10. J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
    [CrossRef]
  11. Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
    [CrossRef] [PubMed]
  12. K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
    [CrossRef]
  13. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [CrossRef] [PubMed]
  14. Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
    [CrossRef]
  15. C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
    [CrossRef] [PubMed]
  16. B. Di Bartolo, J. Collins, and L. Silvestri, Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale (Springer, 2013), Ch. 18.
  17. M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
    [CrossRef]
  18. T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
    [CrossRef]
  19. H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
    [CrossRef] [PubMed]
  20. B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
    [CrossRef] [PubMed]
  21. J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
    [CrossRef]
  22. F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
    [CrossRef] [PubMed]
  23. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [CrossRef] [PubMed]
  24. D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College, 2003).
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  26. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  27. http://refractiveindex.info/?group=CRYSTALS&material=Al2O3
  28. M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).
  29. R. A. Kirkman and M. Kline, “The transverse electric modes in coaxial cavities,” Proc. I.R.E. 34, 14 – 17 (1946).
    [CrossRef]
  30. O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
    [CrossRef]
  31. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
    [CrossRef] [PubMed]

2013 (4)

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[CrossRef] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

2012 (3)

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85(4), 045407 (2012).
[CrossRef]

2011 (4)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
[CrossRef]

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
[CrossRef]

2010 (2)

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[CrossRef] [PubMed]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

2009 (1)

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[CrossRef] [PubMed]

2008 (3)

Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
[CrossRef] [PubMed]

K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

2007 (2)

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

2006 (3)

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

2004 (1)

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1854 (1)

W. Thomson, “On the theory of the electric telegraph,” Proc. R. Soc. Lond. 7(0), 382–399 (1854).
[CrossRef]

Aguilar, J. F.

J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
[CrossRef]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Archibald, M. M.

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

Argenti, N.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Atwater, H. A.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[CrossRef] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[CrossRef] [PubMed]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Ballif, C.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Bednorz, M.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Burgos, S. P.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[CrossRef] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[CrossRef] [PubMed]

Burns, M. J.

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[CrossRef] [PubMed]

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Caballero, N.

J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
[CrossRef]

Cai, D.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Chang, M. T.

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

Chen, C. D.

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

Chen, L. J.

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

Chen, Z. G.

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

Cheng, H. M.

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

Chien, Y. J.

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

Chiles, T. C.

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Cho, Y. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Chou, L. J.

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Clary, M.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Connolly, T.

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

Cubero, O.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

de Waele, R.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[CrossRef] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[CrossRef] [PubMed]

Dhakal, P.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85(4), 045407 (2012).
[CrossRef]

Eminian, C.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Gao, W.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Gao, Y.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Gao, Y. T.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

Giersig, M.

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Gonzalez-Hernandez, H.

J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
[CrossRef]

Granet, G.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Han, S.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Haug, F.-J.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Herczynski, A.

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Hoffmann, P.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Hsieh, C. H.

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

Huang, A. P.

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kaminska, E.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Karilainen, A.

O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
[CrossRef]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Kempa, J.

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Kempa, K.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
[CrossRef] [PubMed]

K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Kirkpatrick, T.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Ko, S. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Kozina, O.

O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Lan, Y. C.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Li, F.

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Liu, G.

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Lu, G. Q.

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

McMahon, G.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Melnikov, L.

O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
[CrossRef]

Merlo, J. M.

J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
[CrossRef]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Moreau, A.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Nam, K. T.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Naughton, J. R.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Naughton, M. J.

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[CrossRef] [PubMed]

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Nefedov, I.

O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
[CrossRef]

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Papis, E.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Park, C.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Park, J.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Park, J. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Park, Y. K.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Paudel, T.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Peng, Y.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
[CrossRef] [PubMed]

Perentes, A.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Piotrowska, A.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Polman, A.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[CrossRef] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[CrossRef] [PubMed]

Poujet, Y.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Pustelny, T.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Ren, Z.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Ren, Z. F.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Rizal, B.

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Roussey, M.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Rybczynski, J.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85(4), 045407 (2012).
[CrossRef]

Salvi, J.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Santschi, C.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Shepard, A.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Shepard, S.

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

Shin, J.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Sidor, Z.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Söderström, T.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Thomson, W.

W. Thomson, “On the theory of the electric telegraph,” Proc. R. Soc. Lond. 7(0), 382–399 (1854).
[CrossRef]

Urbanczyk, M.

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Wang, H.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Wang, X.

Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
[CrossRef] [PubMed]

K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Ye, F.

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[CrossRef] [PubMed]

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Yu, H. S.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Zhang, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Zhao, H.

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Zou, J.

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

ACS Nano (1)

H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012).
[CrossRef] [PubMed]

Anal. Chem. (1)

B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013).
[CrossRef] [PubMed]

Appl. Phys. B (1)

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007).
[CrossRef]

Materials (1)

O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011).
[CrossRef]

Mol. Quant. Acoust. (1)

M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).

Nano Lett. (3)

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[CrossRef] [PubMed]

C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008).
[CrossRef] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[CrossRef] [PubMed]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Nat. Photonics (1)

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Nature (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Phot. Nano. Fund. Appl. (1)

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006).
[CrossRef]

Phys. Rev. B (3)

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85(4), 045407 (2012).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi A (1)

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011).
[CrossRef]

Phys. Status Solidi RRL (1)

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010).
[CrossRef]

Proc. R. Soc. Lond. (1)

W. Thomson, “On the theory of the electric telegraph,” Proc. R. Soc. Lond. 7(0), 382–399 (1854).
[CrossRef]

Proc. SPIE (1)

J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011).
[CrossRef]

Science (1)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Other (6)

D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College, 2003).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

http://refractiveindex.info/?group=CRYSTALS&material=Al2O3

R. A. Kirkman and M. Kline, “The transverse electric modes in coaxial cavities,” Proc. I.R.E. 34, 14 – 17 (1946).
[CrossRef]

B. Di Bartolo, J. Collins, and L. Silvestri, Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale (Springer, 2013), Ch. 18.

D. Pozar, Microwave Engineering (John Wiley and Sons, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of the nanocoax array. The distance between centers is ~1.3 µm in a hexagonal close-packed lattice. Scale bar: 1 µm. The inset shows a magnification of one coax, where green corresponds to SU-8, red to Al2O3 and yellow to Au. (b) Schematic experimental setup of the NSOM system. The image scale is not the real. QTF = quartz tuning fork.

Fig. 2
Fig. 2

NSOM-measured (a - d) and calculated (f - i) images of the propagated modes in the nanocoax structure. The wavelengths were 850 nm (a, f), 660 nm (b, g), 532 nm (c, h) and 473 nm (d, i). In all cases, the polarization is in the vertical direction, the scale bars represent 200 nm and circles represent the inner and outer radii of the coax annuli. (e) Three-dimensional representation of the nanocoax topography (lower, via AFM) and the corresponding near-field intensity (upper) for 532 nm wavelength.

Fig. 3
Fig. 3

(a) Calculated dispersion relations of the modes propagating in the nanocoax structure. The dashed lines represent the frequencies employed (excitation wavelengths) and the shaded zone represents the zone where plasmonic modes appear (i.e. separated from photonic modes by the light line ω = kc). (b) Calculated propagation lengths for the studied modes. The dashed lines represent the wavelengths used and the shaded zone indicates the length L of the nanocoax structure. Note the logarithmic scales.

Fig. 4
Fig. 4

Experimental (black line and green circles) and calculated (red line) transmission. Circles were obtained using single wavelength sources. The resonant modes discussed in the text are indicated.

Tables (1)

Tables Icon

Table 1 Maximum propagation length for each studied mode

Metrics