Abstract

We investigated liquid-sheet jets with controllable thickness for application to terahertz (THz) spectroscopy. Slit-type and colliding-jet nozzles were used to generate optically flat liquid jets. The thickness of the liquid sheet was determined precisely by spectral interference and THz time-domain-spectroscopy methods. By adjusting the collision angle of the colliding-jet nozzle, we could control the thickness of the liquid sheet from 50 to 120 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution

Hironori Ohba, Morihisa Saeki, Ikuo Wakaida, Rie Tanabe, and Yoshiro Ito
Opt. Express 22(20) 24478-24490 (2014)

Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]

Uffe Møller, David G. Cooke, Koichiro Tanaka, and Peter Uhd Jepsen
J. Opt. Soc. Am. B 26(9) A113-A125 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
    [Crossref]
  2. J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy,” Phys. Rev. B 80, 235205 (2009).
  3. Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
    [Crossref] [PubMed]
  4. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31(15), 2356–2358 (2006).
    [Crossref] [PubMed]
  5. M. Kondoh, Y. Ohshima, and M. Tsubouchi, “Ion effects on the structure of water studied by terahertz time-domain spectroscopy,” Chem. Phys. Lett. 591, 317–322 (2014).
    [Crossref]
  6. H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464(4-6), 166–170 (2008).
    [Crossref]
  7. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
    [Crossref]
  8. J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 80, 235206 (2009).
  9. M. Tsubouchi, M. Nagai, and Y. Ohshima, “Terahertz tomography of a photo-induced carrier based on pump-probe spectroscopy using counterpropagation geometry,” Opt. Lett. 37(17), 3528–3530 (2012).
    [Crossref] [PubMed]
  10. G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
    [Crossref]
  11. E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
    [Crossref] [PubMed]
  12. A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
    [Crossref]
  13. P. K. Runge and R. Rosenberg, “Runconfined flowing-dye films for CW dye lasers,” IEEE J. Quantum Electron. 8(12), 910–911 (1972).
    [Crossref]
  14. J. P. Letouzey and S. O. Sari, “Continuous pulse train dye laser using an open flowing passive absorber,” Appl. Phys. Lett. 23(6), 311–313 (1973).
    [Crossref]
  15. M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
    [Crossref]
  16. G. Taylor, “Formation of thin flat sheets of water,” Proc. Roy. Soc. London Ser. A-Math. Phys. Sci. 259(1296), 1–17 (1960).
    [Crossref]
  17. Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31(1), 56–62 (2001).
    [Crossref]
  18. Y. J. Choo and B. S. Kang, “The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets,” Phys. Fluids 19(11), 112101 (2007).
    [Crossref]
  19. G. Bedard and J. L. Breton, “New jet-stream technique for dye-lasers,” Opt. Commun. 55(5), 342–344 (1985).
    [Crossref]
  20. J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
    [Crossref]
  21. U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids Invited,” J. Opt. Soc. Am. B 26(9), A113–A125 (2009).
    [Crossref]
  22. S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
    [Crossref] [PubMed]
  23. B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
    [Crossref] [PubMed]
  24. K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
    [Crossref] [PubMed]
  25. E. A. Ibrahim and A. J. Przekwas, “Impinging Jets Atomization,” Phys. Fluids A Fluid Dyn. 3(12), 2981–2987 (1991).
    [Crossref]
  26. W. E. Ranz, “Some experiments on the dynamics of liquid films,” J. Appl. Phys. 30(12), 1950–1955 (1959).
    [Crossref]
  27. K. D. Miller, “Distribution of spray from impinging liquid jets,” J. Appl. Phys. 31(6), 1132–1133 (1960).
    [Crossref]
  28. D. Hasson and R. E. Peck, “Thickness distribution in a sheet formed by impinging jets,” AIChE J. 10(5), 752–754 (1964).
    [Crossref]
  29. R. Li and N. Ashgriz, “Characteristics of liquid sheets formed by two impinging jets,” Phys. Fluids 18(8), 13 (2006).
    [Crossref]
  30. P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
    [Crossref]
  31. M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13(11), 1727–1738 (2002).
    [Crossref]
  32. J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [Crossref]
  33. R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20(15), 1646–1648 (1995).
    [Crossref] [PubMed]
  34. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [Crossref] [PubMed]

2014 (1)

M. Kondoh, Y. Ohshima, and M. Tsubouchi, “Ion effects on the structure of water studied by terahertz time-domain spectroscopy,” Chem. Phys. Lett. 591, 317–322 (2014).
[Crossref]

2012 (2)

M. Tsubouchi, M. Nagai, and Y. Ohshima, “Terahertz tomography of a photo-induced carrier based on pump-probe spectroscopy using counterpropagation geometry,” Opt. Lett. 37(17), 3528–3530 (2012).
[Crossref] [PubMed]

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

2011 (3)

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

2009 (4)

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy,” Phys. Rev. B 80, 235205 (2009).

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 80, 235206 (2009).

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
[Crossref] [PubMed]

U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids Invited,” J. Opt. Soc. Am. B 26(9), A113–A125 (2009).
[Crossref]

2008 (2)

J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464(4-6), 166–170 (2008).
[Crossref]

2007 (1)

Y. J. Choo and B. S. Kang, “The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets,” Phys. Fluids 19(11), 112101 (2007).
[Crossref]

2006 (2)

2004 (1)

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

2003 (1)

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[Crossref]

2002 (2)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13(11), 1727–1738 (2002).
[Crossref]

2001 (1)

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31(1), 56–62 (2001).
[Crossref]

1997 (1)

G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
[Crossref]

1995 (1)

1994 (1)

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

1991 (1)

E. A. Ibrahim and A. J. Przekwas, “Impinging Jets Atomization,” Phys. Fluids A Fluid Dyn. 3(12), 2981–2987 (1991).
[Crossref]

1990 (1)

P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

1989 (2)

M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
[Crossref] [PubMed]

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

1985 (1)

G. Bedard and J. L. Breton, “New jet-stream technique for dye-lasers,” Opt. Commun. 55(5), 342–344 (1985).
[Crossref]

1973 (1)

J. P. Letouzey and S. O. Sari, “Continuous pulse train dye laser using an open flowing passive absorber,” Appl. Phys. Lett. 23(6), 311–313 (1973).
[Crossref]

1972 (1)

P. K. Runge and R. Rosenberg, “Runconfined flowing-dye films for CW dye lasers,” IEEE J. Quantum Electron. 8(12), 910–911 (1972).
[Crossref]

1964 (1)

D. Hasson and R. E. Peck, “Thickness distribution in a sheet formed by impinging jets,” AIChE J. 10(5), 752–754 (1964).
[Crossref]

1960 (2)

K. D. Miller, “Distribution of spray from impinging liquid jets,” J. Appl. Phys. 31(6), 1132–1133 (1960).
[Crossref]

G. Taylor, “Formation of thin flat sheets of water,” Proc. Roy. Soc. London Ser. A-Math. Phys. Sci. 259(1296), 1–17 (1960).
[Crossref]

1959 (1)

W. E. Ranz, “Some experiments on the dynamics of liquid films,” J. Appl. Phys. 30(12), 1950–1955 (1959).
[Crossref]

Ashgriz, N.

R. Li and N. Ashgriz, “Characteristics of liquid sheets formed by two impinging jets,” Phys. Fluids 18(8), 13 (2006).
[Crossref]

Bakker, H. J.

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

Bartal, B.

Baxter, J. B.

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy,” Phys. Rev. B 80, 235205 (2009).

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 80, 235206 (2009).

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Bedard, G.

G. Bedard and J. L. Breton, “New jet-stream technique for dye-lasers,” Opt. Commun. 55(5), 342–344 (1985).
[Crossref]

Bigourd, D.

Bocquet, R.

Bonn, M.

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

Bor, Z.

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

Born, B.

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
[Crossref] [PubMed]

Bradforth, S. E.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[Crossref]

Breton, J. L.

G. Bedard and J. L. Breton, “New jet-stream technique for dye-lasers,” Opt. Commun. 55(5), 342–344 (1985).
[Crossref]

Bründermann, E.

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
[Crossref] [PubMed]

Callahan, K. M.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Chen, J. Y.

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

Chen, X. Y.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[Crossref]

Cheville, R. A.

Choo, Y. J.

Y. J. Choo and B. S. Kang, “The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets,” Phys. Fluids 19(11), 112101 (2007).
[Crossref]

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31(1), 56–62 (2001).
[Crossref]

Cooke, D. G.

Cuisset, A.

Exter, M.

Fattinger, C.

Fertein, E.

Funkner, S.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Gallagher, J. S.

P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Grischkowsky, D.

Hajos, G.

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

Hangyo, M.

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13(11), 1727–1738 (2002).
[Crossref]

Haran, G.

G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
[Crossref]

Hasson, D.

D. Hasson and R. E. Peck, “Thickness distribution in a sheet formed by impinging jets,” AIChE J. 10(5), 752–754 (1964).
[Crossref]

Havenith, M.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
[Crossref] [PubMed]

He, Y.

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

Hebling, J.

J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Heyden, M.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Hindle, F.

Hochstrasser, R. M.

G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
[Crossref]

Hoffmann, M. C.

Hopp, B.

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

Hunger, J.

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

Ibrahim, E. A.

E. A. Ibrahim and A. J. Przekwas, “Impinging Jets Atomization,” Phys. Fluids A Fluid Dyn. 3(12), 2981–2987 (1991).
[Crossref]

Ishida, Y.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Jepsen, P. U.

Kang, B. S.

Y. J. Choo and B. S. Kang, “The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets,” Phys. Fluids 19(11), 112101 (2007).
[Crossref]

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31(1), 56–62 (2001).
[Crossref]

Klebniczki, J.

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

Knab, J. R.

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

Kondoh, M.

M. Kondoh, Y. Ohshima, and M. Tsubouchi, “Ion effects on the structure of water studied by terahertz time-domain spectroscopy,” Chem. Phys. Lett. 591, 317–322 (2014).
[Crossref]

Letouzey, J. P.

J. P. Letouzey and S. O. Sari, “Continuous pulse train dye laser using an open flowing passive absorber,” Appl. Phys. Lett. 23(6), 311–313 (1973).
[Crossref]

Li, R.

R. Li and N. Ashgriz, “Characteristics of liquid sheets formed by two impinging jets,” Phys. Fluids 18(8), 13 (2006).
[Crossref]

Markelz, A. G.

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

Mathies, R. A.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[Crossref]

Matton, S.

Miller, K. D.

K. D. Miller, “Distribution of spray from impinging liquid jets,” J. Appl. Phys. 31(6), 1132–1133 (1960).
[Crossref]

Møller, U.

Mouret, G.

Nagai, M.

M. Tsubouchi, M. Nagai, and Y. Ohshima, “Terahertz tomography of a photo-induced carrier based on pump-probe spectroscopy using counterpropagation geometry,” Opt. Lett. 37(17), 3528–3530 (2012).
[Crossref] [PubMed]

H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464(4-6), 166–170 (2008).
[Crossref]

Nagashima, T.

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13(11), 1727–1738 (2002).
[Crossref]

Nakamoto, M.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Nashima, S.

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13(11), 1727–1738 (2002).
[Crossref]

Nelson, K. A.

Niehues, G.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Ohshima, Y.

M. Kondoh, Y. Ohshima, and M. Tsubouchi, “Ion effects on the structure of water studied by terahertz time-domain spectroscopy,” Chem. Phys. Lett. 591, 317–322 (2014).
[Crossref]

M. Tsubouchi, M. Nagai, and Y. Ohshima, “Terahertz tomography of a photo-induced carrier based on pump-probe spectroscopy using counterpropagation geometry,” Opt. Lett. 37(17), 3528–3530 (2012).
[Crossref] [PubMed]

Peck, R. E.

D. Hasson and R. E. Peck, “Thickness distribution in a sheet formed by impinging jets,” AIChE J. 10(5), 752–754 (1964).
[Crossref]

Przekwas, A. J.

E. A. Ibrahim and A. J. Przekwas, “Impinging Jets Atomization,” Phys. Fluids A Fluid Dyn. 3(12), 2981–2987 (1991).
[Crossref]

Ranz, W. E.

W. E. Ranz, “Some experiments on the dynamics of liquid films,” J. Appl. Phys. 30(12), 1950–1955 (1959).
[Crossref]

Rosenberg, R.

P. K. Runge and R. Rosenberg, “Runconfined flowing-dye films for CW dye lasers,” IEEE J. Quantum Electron. 8(12), 910–911 (1972).
[Crossref]

Runge, P. K.

P. K. Runge and R. Rosenberg, “Runconfined flowing-dye films for CW dye lasers,” IEEE J. Quantum Electron. 8(12), 910–911 (1972).
[Crossref]

Saito, H.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Sari, S. O.

J. P. Letouzey and S. O. Sari, “Continuous pulse train dye laser using an open flowing passive absorber,” Appl. Phys. Lett. 23(6), 311–313 (1973).
[Crossref]

Schiebener, P.

P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Schmidt, D. A.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Schmuttenmaer, C. A.

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 80, 235206 (2009).

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy,” Phys. Rev. B 80, 235205 (2009).

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Schwaab, G.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Sengers, J.

P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

Straub, J.

P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Sun, W. D.

G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
[Crossref]

Tanaka, K.

U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids Invited,” J. Opt. Soc. Am. B 26(9), A113–A125 (2009).
[Crossref]

H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464(4-6), 166–170 (2008).
[Crossref]

Tauber, M. J.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[Crossref]

Taylor, G.

G. Taylor, “Formation of thin flat sheets of water,” Proc. Roy. Soc. London Ser. A-Math. Phys. Sci. 259(1296), 1–17 (1960).
[Crossref]

Tielrooij, K. J.

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

Tobias, D. J.

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

Tsubouchi, M.

M. Kondoh, Y. Ohshima, and M. Tsubouchi, “Ion effects on the structure of water studied by terahertz time-domain spectroscopy,” Chem. Phys. Lett. 591, 317–322 (2014).
[Crossref]

M. Tsubouchi, M. Nagai, and Y. Ohshima, “Terahertz tomography of a photo-induced carrier based on pump-probe spectroscopy using counterpropagation geometry,” Opt. Lett. 37(17), 3528–3530 (2012).
[Crossref] [PubMed]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

van der Post, S. T.

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

Wang, F.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

Watanabe, A.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Weingärtner, H.

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
[Crossref] [PubMed]

Wynne, K.

G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
[Crossref]

Yada, H.

H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464(4-6), 166–170 (2008).
[Crossref]

Yajima, T.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Yeh, K. L.

Zheng, W.

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

AIChE J. (1)

D. Hasson and R. E. Peck, “Thickness distribution in a sheet formed by impinging jets,” AIChE J. 10(5), 752–754 (1964).
[Crossref]

Appl. Phys. Lett. (1)

J. P. Letouzey and S. O. Sari, “Continuous pulse train dye laser using an open flowing passive absorber,” Appl. Phys. Lett. 23(6), 311–313 (1973).
[Crossref]

Biophys. J. (1)

Y. He, J. Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100(4), 1058–1065 (2011).
[Crossref] [PubMed]

Chem. Phys. Lett. (3)

M. Kondoh, Y. Ohshima, and M. Tsubouchi, “Ion effects on the structure of water studied by terahertz time-domain spectroscopy,” Chem. Phys. Lett. 591, 317–322 (2014).
[Crossref]

H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464(4-6), 166–170 (2008).
[Crossref]

G. Haran, W. D. Sun, K. Wynne, and R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274(4), 365–371 (1997).
[Crossref]

Exp. Fluids (1)

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31(1), 56–62 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

P. K. Runge and R. Rosenberg, “Runconfined flowing-dye films for CW dye lasers,” IEEE J. Quantum Electron. 8(12), 910–911 (1972).
[Crossref]

J. Am. Chem. Soc. (2)

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, and M. Havenith, “Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions,” J. Am. Chem. Soc. 134(2), 1030–1035 (2012).
[Crossref] [PubMed]

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy: observation of the onset of collective network motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (2)

W. E. Ranz, “Some experiments on the dynamics of liquid films,” J. Appl. Phys. 30(12), 1950–1955 (1959).
[Crossref]

K. D. Miller, “Distribution of spray from impinging liquid jets,” J. Appl. Phys. 31(6), 1132–1133 (1960).
[Crossref]

J. Chem. Phys. (1)

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121(1), 394–404 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (2)

K. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic Water Reorientation around Ions,” J. Phys. Chem. B 115(43), 12638–12647 (2011).
[Crossref] [PubMed]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. Sengers, and J. S. Gallagher, “Refrative-index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Meas. Sci. Technol. (2)

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13(11), 1727–1738 (2002).
[Crossref]

J. Klebniczki, J. Hebling, B. Hopp, G. Hajos, and Z. Bor, “Fluid Jet with Variable Thickness in the Range 5-20 μm,” Meas. Sci. Technol. 5(5), 601–603 (1994).
[Crossref]

Opt. Commun. (2)

G. Bedard and J. L. Breton, “New jet-stream technique for dye-lasers,” Opt. Commun. 55(5), 342–344 (1985).
[Crossref]

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye-lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Opt. Lett. (4)

Phys. Fluids (2)

R. Li and N. Ashgriz, “Characteristics of liquid sheets formed by two impinging jets,” Phys. Fluids 18(8), 13 (2006).
[Crossref]

Y. J. Choo and B. S. Kang, “The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets,” Phys. Fluids 19(11), 112101 (2007).
[Crossref]

Phys. Fluids A Fluid Dyn. (1)

E. A. Ibrahim and A. J. Przekwas, “Impinging Jets Atomization,” Phys. Fluids A Fluid Dyn. 3(12), 2981–2987 (1991).
[Crossref]

Phys. Rev. B (2)

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 80, 235206 (2009).

J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy,” Phys. Rev. B 80, 235205 (2009).

Proc. Roy. Soc. London Ser. A-Math. Phys. Sci. (1)

G. Taylor, “Formation of thin flat sheets of water,” Proc. Roy. Soc. London Ser. A-Math. Phys. Sci. 259(1296), 1–17 (1960).
[Crossref]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of liquid sheet formed by two colliding jets with jet velocity V, jet diameter 2R, and collision angle 2θ. The polar coordinates r and φ indicate the point in the liquid sheet at which the THz light is focused.
Fig. 2
Fig. 2 Schematics of methods used to measure thickness of liquid sheet. (a) Spectral interference method. (b) Optical time delay detection method with Michelson interferometer. (c) THz-TDS method.
Fig. 3
Fig. 3 Schematic of colliding-jet nozzle for THz spectroscopy. R indicates the liquid reservoir, P is the peristaltic pump, D is the pulsation damper, FM is the flow meter, Va is the flow control valve, RS is the rotation stage, and ST is stainless-steel tube.
Fig. 4
Fig. 4 Experimental apparatus for THz-TDS and spectral interference method.
Fig. 5
Fig. 5 Photographs of liquid sheet of water produced by slit-type nozzle with flow rates of (a) 40, (b) 60, and (c) 90 ml/min. The dotted circle indicates the cracked zone of the liquid sheet.
Fig. 6
Fig. 6 Photographs of liquid sheets produced by colliding-jet nozzle. Panels (a)−(d) show liquid sheets for water and panels (e)−(h) show those for ethylene-glycol at various flow rates and collision angles. (i) Region of acceptable flow rate and collision angle for THz spectroscopy of aqueous solutions.
Fig. 7
Fig. 7 Influence of liquid sheet of water on THz waveforms and spectra. Panels (a) and (b) show the THz waveforms measured in the absence and presence of the liquid sheet of water, respectively, for the water reservoir placed directly below the nozzle. (c) THz waveform transmitted through the liquid sheet of water when the reservoir was placed far from the spectrometer. Panels (d), (e), and (f) show power spectra obtained by Fourier transformed power spectra obtained from the waveforms (a), (b), and (c), respectively. Vertical dotted lines in panels (d), (e), and (f) indicate the rotational absorption lines of water molecules [33, 34].
Fig. 8
Fig. 8 Thickness measurement of liquid sheet of water by spectral interference method. (a) Interference spectrum of white light reflected from a liquid sheet of water produced by the slit-type nozzle. The white light was reflected 16 mm downstream from the nozzle orifice. (b) Spectrum of white light reflected by liquid sheet produced from the colliding-jet nozzle. The white light was reflected 5 mm downstream from the impingement point, and the jets collided at an angle of 60°.
Fig. 9
Fig. 9 Thickness measurement of liquid sheet by THz-TDS method. Panels (a) and (b) show the waveforms of THz pulses transmitted through a liquid sheet produced by the slit-type and colliding-jet nozzles, respectively. The measurement point was 16 mm downstream from the nozzle orifice for the slit-type nozzle and 5 mm downstream from the impingement point for the colliding-jet nozzle, where jets collided at an angle of 60°. The dotted and solid lines show the waveforms measured in the absence and presence of a liquid sheet, respectively. Panels (c) and (d) show the power transmittance T(ν) (filled circles) and the phase shift ϕ(ν) (open circles) calculated from the waveforms measured for the liquid sheets produced by the slit-type and colliding-jet nozzles, respectively. The black solid line shows the results of fitting Eq. (3) to the observed spectra.
Fig. 10
Fig. 10 (a) THz waveforms as a function of collision angle for THz pulse transmitted through a liquid sheet produced by the colliding-jet sheet. The measurement point was 5 mm downstream from the impingement point and the collision angles 2θ were 60° (red), 80° (orange), 100° (green), and 120° (blue). The gray dotted line indicates the THz waveforms in the absence of the liquid sheet. (b) The sheet thickness as a function of the collision angle 2θ.
Fig. 11
Fig. 11 (a) THz waveform as a function of measurement position for THz pulse transmitted through liquid sheet produced by colliding-jet sheet with collision angle 2θ = 80°. The measurement positions were 5.0 (red), 7.5 (green), and 10.0 (blue) mm downstream from the impingement point. The gray dotted line indicates the THz waveforms in the absence of the liquid sheet. (b) Sheet thickness as a function of distance r from impingement point.
Fig. 12
Fig. 12 Dimensionless sheet-thickness parameter K/R2 as a function of collision angle. The filled squares and open diamonds are the experimental data from the present study and from the previous study by Choo and Kang [17], respectively. The solid line shows the result of the theoretical model proposed by Choo and Kang [18].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

  h ( r , φ , θ , R ) = K ( φ , θ , R )   r ,  
    h = [ 2 ( n 1 2 sin 2 α )   1 / 2 λ 1 2 ( n 2 2 sin 2 α )   1 / 2 λ 2 ] 1 ,  
T ˜ (ν)= E ˜ S (ν)  E ˜ R (ν) = 4 n ˜ (ν) { n ˜ (ν)+1 } 2 exp{ i 2πνh c ( n ˜ (ν)1) } 1 [ n ˜ (ν)1 n ˜ (ν)+1 exp{ i 2πν c n ˜ (ν)h } ] 2N 1 [ n ˜ (ν)1 n ˜ (ν)+1 exp{ i 2πν c n ˜ (ν)h } ] 2 .

Metrics