Abstract

The mitigation of both crosstalk and its wavelength dependent sensitivity for homogeneous multicore fiber (MCF) is theoretically investigated using an analytical evaluation approach. It is found there exists a performance trade-off between the crosstalk mitigation and its wavelength dependent sensitivity suppression. After characterizing the fabricated homogeneous MCFs, we verify that although the increasing core pitch can mitigate the crosstalk, the wavelength dependent sensitivity is drastically degraded from 0.07dB/nm to 0.11dB/nm, which is harmful to the dense wavelength division multiplexing (DWDM) transmission over C + L band using MCF.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  2. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.
    [CrossRef]
  3. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ3.
    [CrossRef]
  4. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [CrossRef] [PubMed]
  5. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010).
    [CrossRef] [PubMed]
  6. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
    [CrossRef] [PubMed]
  7. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).
  8. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
    [CrossRef]
  9. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [CrossRef] [PubMed]
  10. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
    [CrossRef]
  11. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
    [CrossRef]
  12. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. European Conf. on Opt. Commun. (ECOC) (2012), PDP Th.3.C.1.
    [CrossRef]
  13. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Characterization of crosstalk in ultra-low-crosstalk multi-core fiber,” J. Lightwave Technol. 30(4), 583–589 (2012).
    [CrossRef]
  14. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972).
    [CrossRef] [PubMed]
  15. H. D. Rudolph and E. G. Neuman, “Approximations for the eigenvalues of the fundamental mode of a step index glass fiber waveguide,” Nachrichtentech. Elektron. 29, 328–329 (1976).
  16. K. Okamoto, Fundamentals of Optical Waveguides (Corona Publishing, 1992).
  17. P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in Proc. European Conf. on Opt. Commun. (ECOC) (2011), paper Tu.5.B.7.
    [CrossRef]

2013 (1)

2012 (3)

2011 (4)

2010 (2)

1976 (1)

H. D. Rudolph and E. G. Neuman, “Approximations for the eigenvalues of the fundamental mode of a step index glass fiber waveguide,” Nachrichtentech. Elektron. 29, 328–329 (1976).

1972 (1)

Arakawa, Y.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

Awaji, Y.

Chandrasekhar, S.

Dimarcello, F. V.

Essiambre, R.-J.

Fini, J. M.

Fishteyn, M.

Foschini, G. J.

Goebel, B.

Guan, N.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

Hayashi, T.

Imamura, K.

Inaba, H.

Kanno, A.

Kawanishi, T.

Klaus, W.

Kobayashi, T.

Koshiba, M.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[CrossRef] [PubMed]

Kramer, G.

Liu, X.

Matsuo, S.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[CrossRef] [PubMed]

Monberg, E. M.

Mukasa, K.

Neuman, E. G.

H. D. Rudolph and E. G. Neuman, “Approximations for the eigenvalues of the fundamental mode of a step index glass fiber waveguide,” Nachrichtentech. Elektron. 29, 328–329 (1976).

Puttnam, B. J.

Rudolph, H. D.

H. D. Rudolph and E. G. Neuman, “Approximations for the eigenvalues of the fundamental mode of a step index glass fiber waveguide,” Nachrichtentech. Elektron. 29, 328–329 (1976).

Saitoh, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[CrossRef] [PubMed]

Sakaguchi, J.

Sasaki, T.

Sasaoka, E.

Shimakawa, O.

Snyder, A. W.

Sugizaki, R.

Takenaga, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[CrossRef] [PubMed]

Tanigawa, S.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

Taru, T.

Taunay, T. F.

Wada, N.

Watanabe, M.

Winzer, P. J.

Yan, M. F.

Zhu, B.

IEEE Photon. J. (1)

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).

IEICE Trans. Commun. E (1)

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E E94-B(2), 409–416 (2011).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. (1)

Nachrichtentech. Elektron. (1)

H. D. Rudolph and E. G. Neuman, “Approximations for the eigenvalues of the fundamental mode of a step index glass fiber waveguide,” Nachrichtentech. Elektron. 29, 328–329 (1976).

Opt. Express (4)

Other (5)

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. European Conf. on Opt. Commun. (ECOC) (2012), PDP Th.3.C.1.
[CrossRef]

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.
[CrossRef]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ3.
[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides (Corona Publishing, 1992).

P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in Proc. European Conf. on Opt. Commun. (ECOC) (2011), paper Tu.5.B.7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Error estimation between analytical results and simulation results.

Fig. 2
Fig. 2

Wavelength dependence of formulas B and C, (a) formula B, (b) formula C.

Fig. 3
Fig. 3

Impacts of core radius a on the WS-XT of formulas B and C, (a) formula B, (b) formula C.

Fig. 4
Fig. 4

Impacts of relative refractive index difference Δ on the WS-XT of formulas B and C, (a) formula B, (b) formula C.

Fig. 5
Fig. 5

Impacts of core pitch Λ on the WS-XT of formula C.

Fig. 6
Fig. 6

(a) Sectional view of fabricated MCF, (b) experimental setup for crosstalk measurement.

Fig. 7
Fig. 7

Experimental characterization of WS-XT with respect to the core pitch of MCF.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

XT =2 RL Λ κ 2 β
κ= Δ a U 2 V 3 K 0 ( Λ a W ) K 1 2 (W)
V= 2π λ n 1 a 2Δ
W=1.1428V0.996
V 2 = W 2 + U 2
β= W 2 a 2 + n 2 2 k 2
K 0 ( Λ a W ) πa 2WΛ exp( Λ a W)
β n 1 k= V a 2Δ
K 1 (W) 3.3 W exp(1.1W)
XT dB =A+B+C
A=10 log 10 ( 2 Δ 1.5 πRL ( 3.3Λ ) 2 )
B=10 log 10 W U 4 V 7
C=10 log 10 [ exp( ( 4.4 2Λ a )W ) ]

Metrics