Abstract

Controlling the space charge distributions in a crystal is indispensable for controlling a KTa1-xNbxO3 (KTN) optical beam deflector. The space charge is built up by applying a voltage and injecting electrons into the KTN crystal. Although a homogeneous distribution is preferable, we observed experimentally that the injected electrons concentrated in the vicinity of the cathode and for some samples the concentration was much lower around the anode. We investigated the electron dynamics theoretically and found that such inhomogeneity was caused by a freezing effect where the motion was very slow considering the duration of the practical voltage application. The depth of the space charge spread or the electron penetration depth from the cathode was proportional to the applied voltage and the permittivity, and inversely proportional to the density of traps or localized states that bind electrons. We believe that the trap density was too large for the samples with inhomogeneous charge distributions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors

Tadayuki Imai, Jun Miyazu, and Junya Kobayashi
Opt. Mater. Express 4(5) 976-981 (2014)

Trapped charge density analysis of KTN crystal by beam path measurement

Chenhui Huang, Yuzo Sasaki, Jun Miyazu, Seiji Toyoda, Tadayuki Imai, and Junya Kobayashi
Opt. Express 22(7) 7783-7789 (2014)

Anomalous index modulations in electrooptic KTa1-xNbxO3 single crystals in relation to electrostrictive effect

Tadayuki Imai, Sohan Kawamura, and Tadashi Sakamoto
Opt. Express 23(22) 28784-28791 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
    [Crossref]
  2. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
    [Crossref]
  3. S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
    [Crossref]
  4. Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
    [Crossref]
  5. R. W. Smith and A. Rose, “Space-charge-limited currents in single crystals of cadmium Sulfide,” Phys. Rev. 97(6), 1531–1537 (1955).
    [Crossref]
  6. A. Rose, “Space-charge-limited current in solid,” Phys. Rev. 97(6), 1538–1544 (1955).
    [Crossref]
  7. M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev. 103(6), 1648–1656 (1956).
    [Crossref]
  8. J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
    [Crossref]
  9. J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
    [Crossref]
  10. T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
    [Crossref]
  11. T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .
  12. A. Many and G. Rakavy, “Theory of transient space-charge-limited currents in solids in the presence of trapping,” Phys. Rev. 126(6), 1980–1988 (1962).
    [Crossref]
  13. R. Paul, “Raumladungsbegrenzte Ströme in halbleitenden K(Ta, Nb)O3-Mishkristallen,” Kristal und Technik 6(3), 405–416 (1971).
    [Crossref]
  14. S. H. Wemple, M. DiDomenico, and A. Jayaraman, “Electron scattering in perovskite-oxide ferroelectric semiconductors,” Phys. Rev. 180(2), 547–556 (1969).
    [Crossref]

2014 (1)

2013 (1)

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

2012 (1)

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

2011 (1)

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

2007 (1)

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

2006 (1)

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

1971 (1)

R. Paul, “Raumladungsbegrenzte Ströme in halbleitenden K(Ta, Nb)O3-Mishkristallen,” Kristal und Technik 6(3), 405–416 (1971).
[Crossref]

1969 (1)

S. H. Wemple, M. DiDomenico, and A. Jayaraman, “Electron scattering in perovskite-oxide ferroelectric semiconductors,” Phys. Rev. 180(2), 547–556 (1969).
[Crossref]

1966 (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

1964 (1)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

1962 (1)

A. Many and G. Rakavy, “Theory of transient space-charge-limited currents in solids in the presence of trapping,” Phys. Rev. 126(6), 1980–1988 (1962).
[Crossref]

1956 (1)

M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev. 103(6), 1648–1656 (1956).
[Crossref]

1955 (2)

R. W. Smith and A. Rose, “Space-charge-limited currents in single crystals of cadmium Sulfide,” Phys. Rev. 97(6), 1531–1537 (1955).
[Crossref]

A. Rose, “Space-charge-limited current in solid,” Phys. Rev. 97(6), 1538–1544 (1955).
[Crossref]

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

DiDomenico, M.

S. H. Wemple, M. DiDomenico, and A. Jayaraman, “Electron scattering in perovskite-oxide ferroelectric semiconductors,” Phys. Rev. 180(2), 547–556 (1969).
[Crossref]

Fujiura, K.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Haruna, M.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Imai, T.

T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
[Crossref]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

Jayaraman, A.

S. H. Wemple, M. DiDomenico, and A. Jayaraman, “Electron scattering in perovskite-oxide ferroelectric semiconductors,” Phys. Rev. 180(2), 547–556 (1969).
[Crossref]

Kato, K.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Kobayashi, J.

T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
[Crossref]

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Lampert, M. A.

M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev. 103(6), 1648–1656 (1956).
[Crossref]

Many, A.

A. Many and G. Rakavy, “Theory of transient space-charge-limited currents in solids in the presence of trapping,” Phys. Rev. 126(6), 1980–1988 (1962).
[Crossref]

Miyazu, J.

T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
[Crossref]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Naganuma, K.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Nakamura, K.

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Ohmi, M.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Okabe, Y.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Paul, R.

R. Paul, “Raumladungsbegrenzte Ströme in halbleitenden K(Ta, Nb)O3-Mishkristallen,” Kristal und Technik 6(3), 405–416 (1971).
[Crossref]

Rakavy, G.

A. Many and G. Rakavy, “Theory of transient space-charge-limited currents in solids in the presence of trapping,” Phys. Rev. 126(6), 1980–1988 (1962).
[Crossref]

Rose, A.

R. W. Smith and A. Rose, “Space-charge-limited currents in single crystals of cadmium Sulfide,” Phys. Rev. 97(6), 1531–1537 (1955).
[Crossref]

A. Rose, “Space-charge-limited current in solid,” Phys. Rev. 97(6), 1538–1544 (1955).
[Crossref]

Sakamoto, T.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

Sasaki, Y.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Sasaura, M.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Shibata, Y.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Skinner, J. G.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Smith, R. W.

R. W. Smith and A. Rose, “Space-charge-limited currents in single crystals of cadmium Sulfide,” Phys. Rev. 97(6), 1531–1537 (1955).
[Crossref]

Toyoda, S.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Ueno, M.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Van Uitert, L. G.

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Wemple, S. H.

S. H. Wemple, M. DiDomenico, and A. Jayaraman, “Electron scattering in perovskite-oxide ferroelectric semiconductors,” Phys. Rev. 180(2), 547–556 (1969).
[Crossref]

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Yagi, S.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Appl. Phys. Express (1)

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Appl. Phys. Lett. (2)

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

J. Appl. Phys. (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Kristal und Technik (1)

R. Paul, “Raumladungsbegrenzte Ströme in halbleitenden K(Ta, Nb)O3-Mishkristallen,” Kristal und Technik 6(3), 405–416 (1971).
[Crossref]

NTT Tech. Rev. (1)

T. Imai, T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal Growth and Electro-optic Properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1 (2007), https://www.ntt-review.jp/archive/2007/200709.html .

Opt. Mater. Express (1)

Opt. Photon. J. (1)

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, J. Kobayashi, and M. Ohmi, “High-speed optical coherence tomography system using a 200-kHz swept light source with a KTN deflector,” Opt. Photon. J. 03(02), 190–193 (2013).
[Crossref]

Phys. Rev. (5)

R. W. Smith and A. Rose, “Space-charge-limited currents in single crystals of cadmium Sulfide,” Phys. Rev. 97(6), 1531–1537 (1955).
[Crossref]

A. Rose, “Space-charge-limited current in solid,” Phys. Rev. 97(6), 1538–1544 (1955).
[Crossref]

M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev. 103(6), 1648–1656 (1956).
[Crossref]

A. Many and G. Rakavy, “Theory of transient space-charge-limited currents in solids in the presence of trapping,” Phys. Rev. 126(6), 1980–1988 (1962).
[Crossref]

S. H. Wemple, M. DiDomenico, and A. Jayaraman, “Electron scattering in perovskite-oxide ferroelectric semiconductors,” Phys. Rev. 180(2), 547–556 (1969).
[Crossref]

Proc. SPIE (1)

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, J. Miyazu, M. Ueno, Y. Okabe, Y. Sasaki, K. Fujiura, M. Sasaura, K. Kato, M. Ohmi, and M. Haruna, “Improvement of coherence length in a 200-kHz swept light source equipped with a KTN deflector,” Proc. SPIE 8213, 821333 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Illustration of KTN optical beam deflector.
Fig. 2
Fig. 2 Spatial distributions of retardation and charge density for two samples.
Fig. 3
Fig. 3 Temporal changes in trapped charge distribution in a KTN single crystal.
Fig. 4
Fig. 4 Electron penetration depths as a function of time.
Fig. 5
Fig. 5 Calculated steady state solutions for electric field E, charge density ρ and retardation R.
Fig. 6
Fig. 6 Calculated results of electron penetration depths as a function of time.
Fig. 7
Fig. 7 Numerically calculated spatial distributions
Fig. 8
Fig. 8 Numerically calculated temporal change in current density.
Fig. 9
Fig. 9 Numerically calculated penetration depth as a function of total trap density.
Fig. 10
Fig. 10 Numerically calculated spatial distributions of charge density for different τ values. To change only τ and not Nt, we changed γ/e. Although θ0 is simultaneously changed, it does not affect the frozen profiles.
Fig. 11
Fig. 11 Experimental penetration depth as a function of εrV.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Δ s = Δ n L = 1 2 n 0 3 g ε 2 E 2 L
ϕ = d d x ( Δ s ) = n 0 3 g ε 2 L E d E d x
d E ( x ) d x = ρ ε .
ϕ ( x ) = n 0 3 g ε L E ρ
R( x )=Δ s // Δ s = 1 2 n 3 0 ( g 11 g 12 ) ε 2 E ( x ) 2 L.
J=eμnE+eD n x
J x =e t ( n+ n t )
E x = e ε ( n n 0 + n t n t0 )
n t t =γ( N t n t )nβ n t
V= 0 d Edx
n t n t0 << N t n t0 .
n= J eμE .
ε e dE dx = J eμE N t 1+ βeμE / γJ + n 0 + n t0
( 1+ θ 0 ) 2 e N t ε E j x= θ 0 2 ( E 2 E j 2 E 0 2 E j 2 )+( E E j E 0 E j )ln 1+E/ E j 1+ E 0 / E j .
θ 0 n 0 n t0 = β γ( N t n t0 )
E j 1 1+ θ 0 J e N t μ
( 1 + θ 0 ) 2 e N t ε E j d = θ 0 2 ( E d 2 E j 2 E 0 2 E j 2 ) + E d E j E 0 E j ln 1 + E d / E j 1 + E 0 / E j
V = E j d + 1 2 ( 1 + θ 0 ) ε E j 2 e N T { 2 θ 0 3 ( 1 + θ 0 ) ( E d 3 E j 3 E 0 3 E j 3 ) + ( E d 2 E j 2 E 0 2 E j 2 ) }
E u V d , t u d μ E u , n u ε E u e d , J u e ρ u μ E u
x = d x , t = t u t , E = E u E , n = n u n , J = J u J
J = n E + k B T e V n x
J x = t ( n + n t )
E x = n + n 0 n t + n t 0
n t t = 1 τ { ( 1 n t N t ) n θ 0 n t }
1 = 0 1 E d x
τ = 1 γ N t t u = μ V γ N t d 2 , N t = N t n u = e N t d 2 ε V , θ 0 = β γ N t .

Metrics