Abstract

We fabricated UVB filtered TiO2 MSM photodetectors by the localized surface plasmon resonance effect. A plasmonic filter structure was designed using FDTD simulations. Final filter structure was fabricated with Al nano-cylinders with a 70 nm radius 180 nm period on 360 nm SiO2 film. The spectral response of the TiO2 MSM photodetector was modified and the UVB response was reduced by approx. 60% with an LSPR structure, resulting in a peak responsivity shift of more than 40 nm. To our knowledge, this is the first published result for the spectral response modification of TiO2 photodetectors with LSPR technique.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Tan, A. Karar, K. Alameh, and Y. T. Lee, “Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles,” Opt. Express 21(2), 1713–1725 (2013).
    [CrossRef] [PubMed]
  2. S. M. Nejad, S. G. Samani, and E. Rahimi, “Characterization of responsivity and quantum efficiency of TiO2-Based photodetectors doped with Ag nanoparticles,” in Mechanical and Electronics Engineering (ICMEE),2nd International Conference on Mechanical and Electronics Engineering (2010), 2, 394–397.
  3. C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
    [CrossRef]
  4. S. Butun, N. A. Cinel, and E. Ozbay, “Nanoantenna coupled UV subwavelength photodetectors based on GaN,” Opt. Express 20(3), 2649–2656 (2012).
    [CrossRef] [PubMed]
  5. S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
    [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  7. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [CrossRef] [PubMed]
  8. D. Lerose, D. Gabler, and S. Junger, “CMOS-integrated geometrically tunable optical filter,” Advanced Semiconductor Manufacturing Conference (ASMC) 23rd Annual SEMI, 97–101, 15–17 (2012).
    [CrossRef]
  9. ISO 21348 Definitions of Solar Irradiance Spectral Categories,” http://www.spacewx.com/pdf/SET_21348_2004.pdf (Last access on 25/03/2014).
  10. D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
    [CrossRef]

2013 (3)

C. L. Tan, A. Karar, K. Alameh, and Y. T. Lee, “Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles,” Opt. Express 21(2), 1713–1725 (2013).
[CrossRef] [PubMed]

C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
[CrossRef]

D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
[CrossRef]

2012 (3)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

S. Butun, N. A. Cinel, and E. Ozbay, “Nanoantenna coupled UV subwavelength photodetectors based on GaN,” Opt. Express 20(3), 2649–2656 (2012).
[CrossRef] [PubMed]

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[CrossRef] [PubMed]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Alameh, K.

Anderson, W. A.

C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
[CrossRef]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Butun, S.

Bütün, B.

D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
[CrossRef]

Çaliskan, D.

D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
[CrossRef]

Cinel, N. A.

Karar, A.

Kozarsky, E.

C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
[CrossRef]

Lee, Y. T.

Ozbay, E.

S. Butun, N. A. Cinel, and E. Ozbay, “Nanoantenna coupled UV subwavelength photodetectors based on GaN,” Opt. Express 20(3), 2649–2656 (2012).
[CrossRef] [PubMed]

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Özbay, E.

D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
[CrossRef]

Özcan, S.

D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
[CrossRef]

Tan, C. L.

Tong, C.

C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
[CrossRef]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Yun, J.

C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
[CrossRef]

J. Electron. Mater. (1)

C. Tong, J. Yun, E. Kozarsky, and W. A. Anderson, “Nanoplasmonic Enhanced ZnO/Si Heterojunction Metal–Semiconductor–Metal Photodetectors,” J. Electron. Mater. 42(5), 889–893 (2013).
[CrossRef]

J. Vac. Sci. Technol. B (1)

D. Çalışkan, B. Bütün, Ş. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B 31(2), 020606 (2013).
[CrossRef]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (3)

D. Lerose, D. Gabler, and S. Junger, “CMOS-integrated geometrically tunable optical filter,” Advanced Semiconductor Manufacturing Conference (ASMC) 23rd Annual SEMI, 97–101, 15–17 (2012).
[CrossRef]

ISO 21348 Definitions of Solar Irradiance Spectral Categories,” http://www.spacewx.com/pdf/SET_21348_2004.pdf (Last access on 25/03/2014).

S. M. Nejad, S. G. Samani, and E. Rahimi, “Characterization of responsivity and quantum efficiency of TiO2-Based photodetectors doped with Ag nanoparticles,” in Mechanical and Electronics Engineering (ICMEE),2nd International Conference on Mechanical and Electronics Engineering (2010), 2, 394–397.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Device structure. (a) Cross sectional view of device with the LSPR structure and SiO2 spacer. (b) SEM image of the fabricated device. (c) SEM close-up image of the Al nano-cylinders with 180 nm period, 70 nm diameter.

Fig. 2
Fig. 2

Simulation of an LSPR filter transmission resonance for (a) different periods when the diameter is 50 nm and for (b) different particle diameters when the period is 150 nm.

Fig. 3
Fig. 3

Effect of SiO2 spacer and LSPR structure on device responsivity. Inset: Intensity distribution for 250, 300, 350 and 400 nm wavelengths.

Fig. 4
Fig. 4

Comparison of the simulation and experiment with and without LSPR filter.

Metrics