Abstract

Single-mode operation in a large-mode-area fiber laser is highly desired for power scaling. We have, for the first time, demonstrated a 50μm-core-diameter Yb-doped all-solid photonic bandgap fiber laser with a mode area over 4 times that of the previous demonstration. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. These fibers only guide light within the bandgap over a narrow spectral range, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. This work demonstrates the strong potential for mode area scaling of in single-mode all-solid photonic bandgap fibers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  2. R. Royon, J. Lhermite, L. Sarger, E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
    [CrossRef] [PubMed]
  3. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
    [CrossRef] [PubMed]
  4. E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
    [CrossRef]
  5. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  6. R. F. Cregan, J. C. Knight, P. S. J. Russell, P. J. Roberts, “Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber,” J. Lightwave Technol. 17(11), 2138–2141 (1999).
    [CrossRef]
  7. W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
    [CrossRef]
  8. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [CrossRef] [PubMed]
  9. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  10. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [CrossRef] [PubMed]
  11. L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [CrossRef]
  12. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
    [CrossRef]
  13. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [CrossRef] [PubMed]
  14. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
    [CrossRef] [PubMed]
  15. A. Isomäki, O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006).
    [CrossRef] [PubMed]
  16. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  17. B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011).
    [CrossRef] [PubMed]
  18. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
    [CrossRef] [PubMed]
  19. S. Saitoh, K. Saitoh, M. Kashiwagi, S. Matsuo, L. Dong, “Design optimization of large-mode-area all-solid photonic bandgap fibers for high-power laser applications,” J. Lightwave Technol. 32(3), 440–449 (2014).
    [CrossRef]
  20. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
    [CrossRef] [PubMed]
  21. E. Coscelli, T. T. Alkeskjold, A. Cucinotta, and S. Selleri, “Design of double-cladding large mode area all-solid photonic bandgap fibers,” in SPIE LASE (International Society for Optics and Photonics, 2014), p. 89610F.
  22. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010).
    [CrossRef] [PubMed]
  23. M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

2014 (1)

2013 (3)

2012 (3)

2011 (1)

2010 (2)

2009 (4)

E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[CrossRef]

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[CrossRef]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[CrossRef] [PubMed]

M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

2003 (2)

2000 (1)

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

1999 (1)

Alkeskjold, T. T.

Arriaga, J.

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

Baumgartl, M.

Broeng, J.

Clarkson, W. A.

Cormier, E.

Cregan, R. F.

Dianov, E. M.

E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

Dong, L.

Dronov, A. G.

Dunn, C.

Ermeneux, S.

Fan, S.

M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

Fermann, M. E.

Fevrier, S.

E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[CrossRef]

Foy, P.

Fu, L.

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[CrossRef]

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Fujimaki, M.

Gapontsev, V. P.

Georgiev, D.

Gu, G.

Hansen, K. R.

Hawkins, T.

Hawkins, T. W.

Iliew, R.

Isomäki, A.

Jakobsen, C.

Jansen, F.

Jauregui, C.

Jones, M.

Jørgensen, M. M.

Kalichevsky-Dong, M. T.

Kashiwagi, M.

Kim, H. K.

M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

Kino, G. S.

M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

Knight, J. C.

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

R. F. Cregan, J. C. Knight, P. S. J. Russell, P. J. Roberts, “Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber,” J. Lightwave Technol. 17(11), 2138–2141 (1999).
[CrossRef]

Kong, F.

Lægsgaard, J.

Laurila, M.

Lederer, F.

Lhermite, J.

Li, J.

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[CrossRef]

Likhachev, M. E.

E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[CrossRef]

Limpert, J.

Lyngsø, J. K.

Marcinkevicius, A.

Maruyama, H.

Matsuo, S.

Mcclane, D.

Mckay, H. A.

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[CrossRef]

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Nilsson, J.

Nolte, S.

Okhotnikov, O. G.

Olausson, C. B.

Otto, H.-J.

Parsons, J.

Petersson, A.

Popov, S. V.

Reeves, W. H.

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

Röser, F.

Rothhardt, J.

Royon, R.

Rulkov, A. B.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. S. J.

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

R. F. Cregan, J. C. Knight, P. S. J. Russell, P. J. Roberts, “Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber,” J. Lightwave Technol. 17(11), 2138–2141 (1999).
[CrossRef]

Saitoh, K.

Saitoh, S.

Salin, F.

Samson, B.

Sarger, L.

Schmidt, O.

Schreiber, T.

Shirakawa, A.

Stutzki, F.

Takenaga, K.

Tanigawa, S.

Taylor, J. R.

Thomas, B. K.

Tunnermann, T.

Tünnermann, A.

Ueda, K.

Vienne, G.

Vyatkin, M. Y.

Wadsworth, W. J.

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

Ward, B.

Wei, K.

Winful, H. G.

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Wu, T.

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Yvernault, P.

Zellmer, H.

Electron. Lett. (1)

W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[CrossRef]

L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

J. Light. Technol. (1)

M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (13)

R. Royon, J. Lhermite, L. Sarger, E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
[CrossRef] [PubMed]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[CrossRef] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[CrossRef] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
[CrossRef] [PubMed]

A. Isomäki, O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006).
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[CrossRef] [PubMed]

B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011).
[CrossRef] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
[CrossRef] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (1)

E. Coscelli, T. T. Alkeskjold, A. Cucinotta, and S. Selleri, “Design of double-cladding large mode area all-solid photonic bandgap fibers,” in SPIE LASE (International Society for Optics and Photonics, 2014), p. 89610F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-section of the Active1 PBF; (b) Zoomed-in cross-section of Active1 PBF.

Fig. 2
Fig. 2

(a) Top: Experimental results of mode profile and intensity distribution using ASE; (b) Below: Simulation of mode profile at Δn = 2.25 × 10−4 and intensity distributions at various ∆n with 0.25x10−4 increments.

Fig. 3
Fig. 3

(a) Simulated effective area versus index depression Δn in a straight fiber; (b) Simulated effective area versus bending radius with Δn = 2.25 × 10−4.

Fig. 4
Fig. 4

(a) Efficiency relative to the absorbed pump as a function of bending diameter. (b) Measured optimal fiber length to achieve maximal efficiency.

Fig. 5
Fig. 5

(a) Beam quality measurement of the output signal. Insets along the curve represent mode profiles at near-field, beam waist and other transition phases. (b) Measured slope efficiencies relative to the launched and absorbed pump power. The dotted line represents a linear fit while the solid circles and triangles represent measured values.

Fig. 6
Fig. 6

The transmission band measured from the passive PBF and the measured mode profile from Active2 at different wavelengths. Δx is distance of the launch offset. The inset illustrates modes supported within the bandgap of a PBF.

Tables (1)

Tables Icon

Table 1 Dimensions of Fabricated PBF

Metrics